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Abstract: The implementation of image recognition in 

agriculture to detect symptoms of plant disease using deep 
learning Convolutional Neural Network (CNN) models are proven 
to be highly effective. The computational efficiency by using CNN, 
made possible to run the application on mobile device. To optimize 
the utilization of mobile device and choosing the most effective 
CNN model to run as detection system in mobile device with the 
highest accuracy and low resource consumption is proposed in 
this paper. In this study, PlantVillage dataset which extended to 
coffee leaf, were tested and compared using three CNN models, 
two models which specifically designed for mobile, MobileNet and 
Mobile Nasnet (MNasNet), and one model that recognized for its 
accuracy on personal computer (PC), InceptionV3. The 
experiment executed on both mobile and PC found a slightly 
degradation on accuracy when the application is running on 
mobile. InceptionV3 experienced the most persistence model 
compares to MNasNet and MobileNet. Yet, InceptionV3 had 
biggest latency time. The final result on mobile device recorded 
InceptionV3 achieved highest accuracy of 95.79%, MNasNet 
94.87%, and MobileNet 92.83%, while for time latency MobileNet 
achieved the lowest with 394.70 ms, MNasnet 430.20 ms, and 
InceptionV3 2236.10 ms respectively. It is expected that the 
outcome of this study will be of great benefit to farmers as mobile 
image recognition would help them analyze the condition of their 
plants on site simply by taking a picture of the leaf and running 
the experiment on their mobile device. 
 

Keywords: Deep learning, CNN, Pretrained model, TFLite, 
Mobile application.  

I. INTRODUCTION 

Indonesia is among the biggest coffee producers in the 
world[1], as stated by the Ministry of the Industry of the 
Republic of Indonesia in Table- I, which shows countries 
with highest productivity in the world. 

Table- I: Biggest four world coffee producers 

No Country Production(ton/year) 

1 Brazil 2,900,000 
2 Vietnam 1,600,000 
3 Colombia 840,000 
4 Indonesia 639,000 
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Although being one of the biggest coffee producer, 
statistically compared with the other three countries, the 
productivity of Indonesian coffee is considered low[2]. 
Coffee leaf rust contributes significantly in reducing 
production and is reported to be the most destructive disease 
in coffee plant[3]. This fact leads to a research that can 
contribute in detecting early symptoms of leaf disease in 
coffee plant. 

Object recognition has accomplished significant outcomes 
in detecting pattern in image recognition by consolidating 
computer vision with an artificial intelligence techniques[4], 
that can be used as a tool in agriculture especially for plant 
leaf disease classification.   

Some studies in leaf disease early detection, especially in 
coffee plants, were developed using Hyperspectral Image 
System(HIS)[5]–[7]. These technique are widely used in the 
last decade[8].  

HIS technique obtains a hyperspectral image from the 
sensor system in form of camera and spectrograph, by 
capturing data visible across near-infrared wavelengths and 
supplying narrow spectral channels from the same surface 
area[9].   

Paper review on advance hyperspectral image techniques 
have been published to compare the benefits and limitations 
of this potential method[10]. The need of fast computers, 
sensitive detectors, and large data storage capacity to analyze 
hyperspectral data made HIS costly and complex. 

Different techniques in plant disease detection are carried 
out by utilizing deep learning CNN model[11]–[15].  The 
model has advantages in computational efficiency by using 
convolution operations, special integration, and sharing 
parameters which made it possible to operate on any mobile 
devices[16]. Review paper on deep learning has been 
published, concentrated on the size impact and variety of 
datasets to oversee how effective deep learning by using 
transfer learning methods for plant disease 
detection[17]-[18]. 

Several studies oversee the optimization technic to execute 
CNN efficiently on mobile device[19]–[21]. Others uses 
Offloading technique by running MobiRNN locally and 
resulting significant decrease on latency[22]. It is quite 
encouraging to be able to run a plant disease detection system 
by running CNN-based model[23]. 

In plantation sites with limited internet connectivity, an 
application that can run on mobile device to perform as a 
plant disease detection system, which can be executed locally 
without the need to go through the process of sending images 
to the server for identification processes, avoiding limitation 
on internet connections,  
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and to avoid processing latency the servers in Cloud[24] is 
highly benefited for farmers.  

In this study, testing and comparison were carried out 
through two stages. First, the process of retraining using the 
python script from TensorFlow to generate a graph file as 
protobuf file. Then the file is reprocessed using TensorFlow 
Lite converter to generate a TensorFlow lite flat buffer file 
(.lite). The second stage is copying tflite files into mobile and 
run the test on the application installed on mobile.  

In order to do the performance test on CNN models, this 
research utilizes the latest TensorFlow-lite framework, which 
optimize implementation of the three CNN architectures, 
MobileNet, MNasNet, and InceptionV3 on mobile device. 
Android application were built to run the deep learning 
application to read tflite file and make predictions. 

The two main contributions of this paper are: 
1. Evaluating and comparing pre-trained models on PC and 
mobile to get the best model conclusions and whether there is 
a decreased in accuracy. Also recognize the resources needed 
to run applications on mobile such as memory, CPU, power 
consumption, and the average time needed in detection 
process. 
2. Extending a coffee leaf rust dataset by collecting images 
both from the internet and in collaboration with Indonesian 
Coffee and Cacao Plant Research Centre. 

II. RELATED WORKS 

Studies with the topic of plant disease classification and 
detection utilizing the most common CNN models such as 
AlexNet, GoogleNet, CIFAR-10, VGG, and ResNet, using 
the Plant Village dataset and focusing on one type of plant 
have been conducted by many researchers. 

Classification  research of diseases in maize plants, using 
fine-tuned CNN models GoogLeNet and Cifar10, each 
achieved accuracy of 98.9% and 98.8%[11]. The research 
which advantageous from deep learning visualization method 
to provide transparent information to get explanation and 
details of the classification mechanism[13] has been done 
with highest accuracy of 99.76% using inceptionV3 model 
within 5.64 hours training time, while the shortest time in the 
learning process is 0.85 hours with shallow learning type on 
squeeznet model, but with lower accuracy of 96.26%. 

In research that contributed to the provision of datasets 
collected by downloading from the internet and searched by 
diseases and plant names in various sources, the images in 
dataset classified into 15 classes. After perfecting network 
parameters, recorded an overall accuracy 96.3%[14]. 

Research done by Mohanty, Hughes, and Salathé[15] 
evaluated images of plant leaves which distributed in 
multi-class labels, resulted overall accuracy varies from 
85.53% using AlexNet to 99.34% with experiments on 
GoogLeNet variations. The research concluded that 
GoogLeNet performs better than AlexNet with the transfer 
learning training method.  

Research by Brahimi et al[12] compared different learning 
methods, shallow models collaborated with their own models 
(SVM, Random forest) with deep CNN architectural models 
(GoogLeNet and AlexNet). In result, deep model (CNN) 
performed better with accuracy 99.19% and macro f1-score 
98.52% compare to shallow model with accuracy 95.48% 
and macro f1-score 94.19%. 

Studies on the impact of data sets and their variations on 
the effectiveness of deep learning to detect plant diseases, 
lead to many studies using similar tools in a dataset which do 
not reproduce the variety of expected conditions in the field. 
This study explains why most of the studies have succeeded 
in showing near-perfect accuracy such as [13], [15], and [18].  

A research named CNNdroid[24] work on 
GPU-accelerated execution of trained deep CNN on Android, 
Caffe, Theano, and Torch models achieved maximum speed 
of 60X and energy saving 130x on mobile devices. 

A study based on mobile deep learning on cassava 
dataset[23], focused on CNN based model, found that 
different input data (image or video) in varied performance 
play important part for design in real world applications. 

Comparative studies on models such as VGG16, Inception 
v4, ResNet, and DensNet[26] using fine-tuning methods in 
plant disease detection resulting accuracy tests of 81.83%, 
99.66%, 99.75%, and 98.08% respectively. 

Research on plant detection using the CNN deep learning 
method on mobile devices and specifically for coffee plants 
has not been conducted. This study evaluated specific models 
of deep learning CNN that can be explicitly run on mobile 
devices to help classify plant diseases particularly in coffee 
plants, to optimize computing needs and save resources 
without reducing the accuracy and privacy of the mobile 
device itself. 

III. RESEARCH METHODOLOGY 

Methodology of this research comprised two primary 
stages: retraining and testing. The first stage is the retrain on 
pretrained CNN models and the second stage is testing on 
both PC and mobile. The illustration in Fig. 1 shows the order 
of working process in this research. 
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Step 3: 
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label.txt
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Fig. 1. Research methodology  

The retraining steps begin at stage 1 with the preparation of 
data, collecting image data, and then implementing deep 
learning with the method of transfer learning. Stage 2 is the 
process of testing the output file from retraining. 

A. Retrain Stage 

In the retrain process, the system design and fabrication 
illustrated in flow chart in Fig. 2. 
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end
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Fig. 2. Retrain stage process 

The training process of CNN's state of the art at this 
research conducted by utilizing the TensorFlow open-source 
framework, TensorFlow-lite deep learning model, Python 
3.6, PyCharm community edition, and Android developer. 
This research used a PC with the specifications as stated in 
Table- II. 

Table- II: PC configuration and specification 
No   Hardware  Specification 
1 Memory  32Gb 

2 CPU Intel Core i7-8750, 
2.20 GHz Gen 8 

3 Graphics Processor Unit (GPU) GeForce GTX 1050, 
4GB 

4 Operating System Ubuntu 18.04 64 bits 
 

A.1. Dataset Preparation 
Engineered dataset the PlantVillage done by D. P. Hughes 

and M. Salathe[25],  with additional two classes of coffee 
plant leaves were collected from the internet and in 
collaboration with the Indonesian Coffee and Cocoa 
Research Center. Data physically separated from the training 
composition, validation, and testing with composition 60% 
(32,382 Images), 20% (10,756 images), and 20% (10,765 
images). Since the testing process in mobile by picking the 
image manually, in this research, 5% (522 images) of data is 
separated to be tested on PC and mobile with precisely the 
same data. 

Table- III: PlantVillage dataset with additional two 
coffee leaf classes 

No Class Name Train Val Test 
1 Apple-blackrot 363 120 120 
2 Apple-cedar-rust 161 53 53 
3 Apple-healthy 956 318 318 
4 Apple-scab 367 122 122 
5 Blueberry-healthy 873 290 291 
6 Cherry-includingsour-healthy 497 165 165 
7 Cherry-includingsour-powderymildew 612 203 204 
8 Coffee-healthy 116 38 38 
9 Coffee-leafrust 683 227 227 
10 Corn-cercospora-leafspot-grayleafspot 300 99 99 
11 Corn-healthy 676 225 225 
12 Corn-commonrust 693 230 231 
13 Corn-northern-leafblight 573 191 191 
14 Grape-blackrot 687 228 228 
15 Grape-esca-blackmeasles 804 267 267 
16 Grape-healthy 247 82 82 
17 Grape-leafblight-isariopsis-Leafspot 627 208 208 
18 Orange-haunglongbing-citrusgreening 3197 1065 1065 
19 Peach-bacterialspot 1335 444 444 
20 Peach-healthy 210 70 70 
21 Pepper-bell-bacterialspot 580 193 193 
22 Pepper-bell-healthy 859 286 285 
23 Potato-earlyblight 582 193 194 
24 Potato-healthy 90 29 30 
25 Potato-lateblight 582 193 194 
26 Raspberry-healthy 216 71 72 
27 Soybean-healthy 2955 984 985 

28 Squash-powdery-mildew 1078 350 348 
29 Strawberry-healthy 266 88 88 
30 Strawberry-leafscorch 645 214 214 
31 Tomato-bacterialspot 1236 411 411 
32 Tomato-earlyblight 582 193 194 
33 Tomato-healthy 924 308 308 
34 Tomato-lateblight 1110 369 370 
35 Tomato-leafmold 554 184 184 
36 Tomato-mosaic-virus 217 72 72 
37 Tomato-septoria-leafspot 1029 342 343 
38 Tomato-spidermites-twospotted 974 324 324 
39 Tomato-targetspot 816 271 272 
40 Tomato-yellowleaf-curl-virus 3110 1036 1036 
 Total 32382 10756 10765 

A.2.Transfer Learning 
This research introduced a method of transfer learning 

from pretrained models. The concept behind transfer learning 
is a model trained on a large-scale and general dataset, 
namely Imagenet. The aim of this model is to be functioning 
effectively as a generic template for the visual world by 
taking advantage of this feature map without starting from the 
beginning of training models on large scale datasets. The 
choice of model used is specifically designed for mobile and 
one ordinary model. This study also fine-tuned the 
pre-trained models. Fine tuning is a term of transfer learning 
where information acquired during training is used to 
perform assignments or other similar domains[26]. Transfer 
learning consists of two phases, bottleneck creation and 
training. At first phase, all images on the disk will be 
analyzed and calculated. Then the bottle neck value of each 
image will be stored. “Bottleneck” is unofficial term which 

often used to name layers right before the last layer that does 
the classification. When the bottleneck creation is completed, 
the actual training from the top layer of the network begins. 
The output will show cross entropy, accuracy, and validation 
of accuracy. 
A.3. CNN Architecture 

All CNN models generally follow the same architecture, as 
illustrated in Fig. 3, using images as input, follow by 
convolutional operations, pooling operations, and several 
fully connected layers. 

 
Fig. 3. CNN architecture 

Three pre-trained CNN architectures were chosen on this 
study, a pre-trained model stored in Cloud, so that it is 
reusable and downloadable from the framework provider. 

 MobileNet 

The paper[27] explained that MobileNetV2 architecture 
contains an initial full convolution layer with 32 filters, 19 
residual bottleneck layers. ReLU6 used in low-precision 
measurements as non-linearity due to its robustness. 
MobilNet used kernel size 3x3, batch normalization, and 
dropout.  

MobileNet is an architecture created to meet the 
application design needs of mobile and embedded devices.  
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MobileNet has an efficient network and is a collection of 
networks consisting of two hyper-parameters to build a 
model with minimal and low latency. MobileNets are made 
with a depthwise semi-convolutional method to reduce the 
calculation of the first few layers. 

Depthwise separable convolutional explained in paper[28] 
as a form of factored convolution, using factorizes standard 
convolution into deep convolution and with stride 1×1 
convolution namely pointwise convolution, to collaborate 
output with deep convolutional.  

This method will reduce the calculation and size of the 
model drastically. The pretrained mobilenet_v2_1.4 model 
was used in this study, with a top 5 accuracy of 92%.  
 MNasNet 

Described in the paper[29], MNAS (Mobile Neural 
Architecture Automated Search) with low latency as the main 
goal so the search can identify a model that achieves a good 
exchange between accuracy and latency. 

MNasNet is designed for mobile devices that are resource 
efficient with an approach, incorporates latency model by 
using the factorized hierarchical search space method where 
the network layer is classified into several predefined 
frameworks, called block. 

Each block contains several repetitive identical layer 
variables, which has stride 2 and stride 1. Stride 2 at the first 
layer only if the input/output resolution is different and stride 
1 for other layers. MNasNet pretrained produced top-5 
accuracy of 92.55%, with latency of 389 ms. 
 InceptionV3 

The first concept introduced by Szegedy et al. in 2015[30], 
proposed InceptionV3 architecture with an update to the 
inception module to increases the accuracy of the ImageNet 
classification in the GoogLeNet architecture. GoogleNet's 
next version linked to Inception vN with N stand for version 
number. In the paper outline[31], InceptionV3 added factors 
in the third iteration. Every module's output size is the next 
input size. InceptionV3 used variants of reduction techniques 
to minimize grid sizes between the Inception blocks where 
applicable. This architecture collaborates design activation 
with residual connection to accelerate initial network 
training. Inception modules consist of layered integration and 
convolution layers multiple of sizes such as 1x1, 3x3, and 
5x5. 

The aspect that stands out from the Inception module is the 
use of bottleneck layer, which is convolution 1x1. Bottleneck 
layers reduce calculation requirements. Additionally, a 
merging layer is used in modules to reduce dimensions. 

B. Testing Stage 

The testing stage on mobile device and PC illustrated in 
Fig. 4.  

Step 3: Convert 
TF_CONVERT
To TFLITE(.lite)

Step 5: Testing on Mobile

Step 1: Copy  Retrain 
oupu t 

(output_graph.pb ) 
and label.txt to PC

Step 4: Embed to 
Andorid Apss

Step 2: Testing on PC

Step 6: Compare the result 
with model evaluation and 

conf matrix

 
Fig. 4. Testing stage process 

After completing retraining the model which generate a 
graph file defined as google protobuf file (.pb) and output text 
label (.txt). The file will be tested on PC during the training. 
For mobile testing, the graph file will be converted to TFLite 
file and copied into mobile device.  

The conversion process to optimize files running on 
mobile devices, files generated from the training process, for 
example, "retrained_graph.pb" will be converted to 
"retrained_graph.lite" using the "TensorFlow Lite 
Optimizing Converter" program or tflite_convert which is a 
new graphics converter now included with the TensorFlow 
installation.  

TensorFlow uses the Buffer Protocol while TFLite uses 
FlatBuffers. The main benefit of FlatBuffers is that it can be 
mapped in memory and used directly from disk without being 
loaded and parsed. So that startup time is much faster and 
gives the operating system the choice to load and unload 
pages needed from the model file to avoid application 
shutdown when it runs out of memory. The converted file 
will then be copied to the assets folder on mobile. 

For the evaluation purposes on mobile, a mobile 
application was built by modifying the application sample 
from Tensorflow, as illustrated in Fig. 5. 

 

 
Fig. 5. Mobile application testing 

To determine resources consumption, this study used an 
Android profiler, a build-in tool from Android Studio, to 
assess the memory and CPU load requirements during peak 
time on the prediction process. While for the battery resource 
requirements measured using the AccuBatery application. 
The evaluation process will use mobile devices with 
specifications shown in Table- IV. 
 

Table- IV: Mobile device spec 
No Hardware Specification 
1 Memory  4 GB 

2 Processor (CPU) Quad-core Snapdragon 820  
4 Operating system Android 8.0 Marshmallow 
5 Rear Camera  12MP  

IV. EXPERIMENTS 

A.  Experimental Design 

The experiment in this study is divided into two stages, 
retraining and testing.  
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In retraining stage, the evaluation and comparison of 
accuracy and loss time consumed of pretrained architecture is 
counted during the training. The output file generated is 
graph file (.pb) which will be converted to tflite file (.lite) for 
the purpose of mobile evaluation. 

The second stage is running the evaluation of testing data 
on PC and testing performance on mobile. The result is 
measured on both devices for resource requirements such as 
peak memory size, CPU load at peak, and battery usage.  

The result is used to set the minimum requirements for 
mobile hardware specification and which model is the most 
effective to be used in mobile devices.  

The set-up environment of this study is a PC or 
workstation equipped with tools to run deep learning, python 
3.6, TensorFlow, OpenCV, Keras, Pandas, NumPy, and 
seaborn modules. Meanwhile for mobile device, a mobile 
application was built using Android developer. The 
application offers two choices to determine the image source, 
whether to take pictures using the camera or to get pictures 
from image directory. Output generated time consumption 

per image, confidence percentage prediction, and predicted 
label.A comparison test between PC and mobile is performed 
using the same separated image. This experiment aims to 
assess accuracy, latency, and mobile resource consumption.  

Testing on PC performed by running image 
label_image.py script from TensorFlow over images and 
manually checked on mobile using built plant disease 
application. The result will be sent to online matrix 
calculator[32]. Until beginning of the test, the mobile device 
battery will be fully charged and restarted to get the baseline 
and to ensure no other application are running. 

B.  Experimental Result 

B.1. Retraining on PC 
The results of retraining stage are summarized in Table- V.  

Run in 30 epochs, by equating all hyperparameters, using 
learning rate 0.01 for MobileNet and MNasNet and learning 
rate 0.1 for InceptionV3, resulting final training and 
validation.   

Table- V: Retraining result accuracy, loss, output, and time 

 
The final test and categorical cross entropy calculation in 

this study showed MobileNet leading over two other models 
with slightly different points.  

At the final evaluation, MNasNet recorded 97% highest 
overall accuracy followed by 95.10% of MobileNet, and 
94.80% of InceptionV3. While loss on validation recorded 
InceptionV3, MNasNet, and MobileNet respectively from the 
lowest to the highest. From output file MobileNet generated 
24.10 MB, MNasNet 24.64 MB, and InceptionV3 85.69MB. 

The training time difference between the two models 
specifically designed for mobile device (MobileNet and 
MNasNet) and InceptionV3 model is quite significant which 
InceptionV3 took 3x longer than the other two. Performance 
of each model in training process on dataset training, 
validation, and testing graphically illustrated by grouped on 
Fig. 6 for accuracy and Fig. 7 on cross entropy performance. 

 
Fig. 6. Accuracy performance on each model 

 In Fig. 6 accuracy of MNasNet and InceptionV3 indicates 
better performance than MobileNet. MNasnet and 
InceptionV3 more consistent between training and 
validation. Meanwhile in Fig. 7, loss value InceptionV3 is the 
lowest compared to MNasNet and MobileNet. Both graphic 
images show that models performed no overfitting indicated.  
 

 
Fig. 7. Categorical-cross entropy loss on each model 

The second experiment performed after the retraining phase 
is the testing of models by separating 20 percent of the data. 
This experiment aims to determine the level of accuracy per 
plant class, presented classification metrics to display the 
reliability, recall, and F1-score. The result presented in  

Table- VI. 
Table- VI: Classification performance summary 

Models Weighted Average 
Precision Recall F1-score 

MobileNet 0.95 0.94 0.95 
MNasNet 0.97 0.96 0.96 
InceptionV3 0.96 0.96 0.96 

 
 
 

 
Model and Configuration 

Accuracy 
(%) 

Loss Output File 
(MB) 

Time/epoch 
(Minutes) 

  Train Valid Test Train Valid .pb .lite 

MobileNet 0.01 60:20:20 95.41% 94.99% 95.10% 0.1179 0.1855 24.10 23.96 3.2 

MNasNet 0.01 60:20:20 97.55% 95.78% 97.00% 0.1067 0.1205 24.64 24.27 3.7 

InceptionV3 0.1 60:20:20 96.20% 96.17% 94.80% 0.0257 0.0208 85.69 85.39 8.6 
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B.2. Test Comparison PC vs Mobile 
 Accuracy and Latency on Mobile vs PC 

An experiment on performance comparison between PC 
and mobile using 522 images indicated in Table- VII with 
overall accuracy and average latency. 

Table- VII: Accuracy and latency by models on PC and 
mobile 

Models Accuracy 
(%) 

Average Latency 
(ms) 

PC Mobile PC Mobile 

MobileNet 95.32 92.83 220.90 394.70 

MNasNet 97.32 94.87 348.30 430.20 

InceptionV3 96.93 95.79 376.83 2236.10 

Figures in Table- VII showed assessment on mobile 
recorded some loss of accuracy while MobileNet and 
MNasNet had a slightly higher latency level.  InceptionV3 
encountered the lowest loss of 1.14% with MobileNet 2.45%, 
and MNasNet 2.5%. Meanwhile, InceptionV3 showed 
significantly different latency levels between mobile and PC. 
 Confusion Matrix on PC 

Performance of classification output for each class and 
result test model on PC illustrated with confusion matrix in 
Fig. 8 – Fig. 10. Y axis represent true labels and Y axis 
predicted labels. 

 
Fig. 8. MobileNet confusion matrix on PC 

Fig. 8 shows good performance on most of the class, while 
two classes, coffee healthy and tomato, showed slightly poor 
in overall performance. 
 

 
Fig. 9. MNasNet confusion matrix on PC 

Fig. 9 shows that class tomato get better performance on 
MNasNet, while class coffee healthy shows slightly 
decreased performance. 

 
Fig. 10. InceptionV3 confusion matrix on PC 

 
From Fig. 8 – Fig. 10 shows that the classification 

performance of each class has a similar pattern, tomato 
classes recorded poor performance results while the other 
classes recorded good performance. 
 Classification Performance Comparison 
Experiment to test and compare the output file generated 
from retraining process been done with result on Table- VIII 
to Table- X. 

Table- VIII: Comparison performance each class on 
MobileNet 

 
 

Precision Recall F1 Score Precision Recall F1 Support
1 Apple-blackrot 1.0 1.0 1.0 1.0 1.0 1.0 6
2 Apple-cedar-rust 1.0 1.0 1.0 1.0 1.0 1.0 2
3 Apple-healthy 0.94 1.0 1.0 1.0 1.0 1.0 15
4 Apple-scab 0.9 1.0 0.9 1.0 1.0 1.0 6
5 Blueberry-healthy 1.0 1.0 1.0 1.0 1.0 1.0 14
6 Cherry-includingsour-healthy 1.0 1.0 1.0 1.0 1.0 1.0 8
7 Cherry-includingsour-powderymildew 1.0 1.0 1.0 1.0 1.0 1.0 10
8 Coffee-healthy 1.0 1.0 1.0 1.0 1.0 1.0 3
9 Coffee-leafrust 1.0 1.0 1.0 1.0 1.0 1.0 11
10 Corn-cercospora-leafspot-grayleafspot 1.0 0.75 0.86 0.75 0.75 0.75 4
11 Corn-commonrust 0.9 1.0 1.0 1.0 1.0 1.0 11
12 Corn-healthy 1.00 1.0 1.0 1.0 1.0 1.0 11
13 Corn-northern-leafblight 1.00 1.0 1.00 0.89 0.89 0.89 9
14 Grape-blackrot 0.9 1.0 0.96 0.91 0.91 0.91 11
15 Grape-esca-blackmeasles 1.0 0.92 0.96 0.92 0.92 0.92 13
16 Grape-healthy 1.0 1.0 1.0 1.0 1.0 1.0 4
17 Grape-leafblight-isariopsis-Leafspot 1.0 0.70 0.82 1.0 1.0 1.0 10
18 Orange-haunglongbing-citrusgreening 1.0 1.0 1.00 1.0 1.0 1.0 53
19 Peach-bacterialspot 1.0 0.91 0.95 1.0 1.0 1.0 22
20 Peach-healthy 0.5 1.0 0.67 1.0 1.0 1.0 3
21 Pepper-bell-bacterialspot 0.78 0.78 0.78 0.69 1.0 0.82 9
22 Pepper-bell-healthy 0.93 0.93 0.93 1.0 1.0 1.0 14
23 Potato-earlyblight 0.75 0.67 0.71 0.82 1.0 1.0 9
24 Potato-healthy 1.0 1.00 1.00 1.0 1.0 1.0 1
25 Potato-lateblight 0.67 0.89 0.76 0.90 1.0 0.95 9
26 Raspberry-healthy 1.0 1.00 1.0 1.0 1.0 1.0 3
27 Soybean-healthy 1.0 1.00 1.0 1.0 0.96 0.98 49
28 Squash-powdery-mildew 1.0 1.00 1.0 1.0 1.0 1.0 17
29 Strawberry-healthy 1.0 1.00 1.0 1.0 1.0 1.0 4
30 Strawberry-leafscorch 0.88 0.70 0.78 1.0 0.80 0.89 10
31 Tomato-bacterialspot 0.95 0.90 0.92 1.0 1.0 1.0 20
32 Tomato-earlyblight 0.80 0.44 0.57 0.86 0.67 0.75 9
33 Tomato-healthy 0.94 1.00 0.97 1.0 0.87 0.93 15
34 Tomato-lateblight 0.89 0.89 0.89 1.0 0.89 0.84 18
35 Tomato-leafmold 0.75 1.00 0.86 0.8 0.89 0.84 9
36 Tomato-mosaic-virus 1.0 0.67 0.80 1.0 1.0 1.0 3
37 Tomato-septoria-leafspot 0.79 0.88 0.83 0.84 0.94 0.90 17
38 Tomato-spidermites-twospotted 0.57 1.00 0.7 0.93 0.88 0.90 16
39 Tomato-targetspot 0.50 0.077 0.13 0.80 0.92 0.86 13
40 Tomato-yellowleaf-curl-virus 1.0 0.98 0.99 1.00 0.98 0.99 51

Mobile PC
ClassNo
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From the Table- VIII, some class experienced accuracy 
degradation on mobile such apple healthy and tomato class in 
overall, and very poor performance on tomato-targetspot 
while coffee, corn, grape and soybean experienced better 
performance on mobile. 

Table- IX: Comparison performance each class on MNasNet 

 
Table- IX show that the result on MNasNet evenly 

distributed slight degradation on every class compared to 
MobileNet which had one class very poor performance. 
Hence in overall MNasNet performance is better than 
MobileNet. 

Table X: Comparison performance each class on 
InceptionV3 

 
Table- X, shows that InceptionV3 performance both 

mobile and PC experienced same performance in each class, 
it made InceptionV3 considered the most robust model but 
with trade-off in resource and latency. 

Comparison performance score for each class and model 
summarized on Table- XI. 

Table- XI: Classification performance comparison 
summary on PC and mobile by average 

 

Model 

PC Mobile 

Avg 
Precision 

Avg 
Recall 

Avg 
F1-score 

Avg 
Precision 

Avg 
Recall 

Avg 
F1-score 

MobileNet 0.95 0.96 0.95 0.92 0.91 0.90 

MNasNet 0.97 0.97 0.97 0.95 0.93 0.94 

InceptionV3 0.97 0.96 0.96 0.96 0.95 0.96 

Above figures shows average precision, recall, and 
F1-score on PC higher than mobile, which mean there is 
slightly degradation on performance in mobile. 

 
 Mobile Device Resource Consumption 

The experiment to determine resource consumption 
needed can be seen in Table- XII.  

Table- XII: Resource consumption 
 
 
Model  

Resource Consumption 

Memory 
(peak) 

CPU Load 
(peak) 

% 

Battery 

MobileNet 134 25.1 14.2 

MNasNet 132 23.2 16.6 

InceptionV3 331 43.5 34.3 

The figure above shows MobileNet and MNasNet require 
fewer resources, while InceptionV3 uses nearly half of the 
other two models. An experiment to detect resource 
consumption on Android profiler-captured mobile devices, 
capture CPU load on green at the top, memory usage on blue 
in the middle, and energy usage graphs at the bottom, shown 
in figures below using a PC and the Mobile is in Fig. 11 – Fig. 
13 and summarized in Table- XII above. 

 
Fig. 11. Inception v3 resource profile 

On Fig. 11, illustrated CPU load per image consumed 
highest CPU load and memory usage on InceptionV3 but 
with low energy consumed.  

 
Fig. 12. MobileNet resource profile 

Precision Recall F1 Score Precision Recall F1 Support
1 Apple-blackrot 1.0 0.83 0.91 1.0 1.0 1.0 6
2 Apple-cedar-rust 1.0 1.0 1.0 1.0 1.0 1.0 2
3 Apple-healthy 1.0 1.0 1.0 1.0 1.0 1.0 15
4 Apple-scab 1.0 1.0 1.0 1.0 1.0 1.0 6
5 Blueberry-healthy 1.0 1.0 1.0 1.0 1.0 1.0 14
6 Cherry-includingsour-healthy 1.0 0.88 0.93 1.0 1.0 1.0 8
7 Cherry-includingsour-powderymildew 1.0 1.0 1.0 1.0 1.0 1.0 10
8 Coffee-healthy 1.0 1.0 1.0 1.0 1.0 1.0 3
9 Coffee-leafrust 1.0 1.0 1.0 1.0 1.0 1.0 11
10 Corn-cercospora-leafspot-grayleafspot 1.0 0.75 0.86 1.00 0.75 0.86 4
11 Corn-commonrust 1.0 1.0 1.0 1.0 1.0 1.0 11
12 Corn-healthy 1.0 1.0 1.0 1.0 1.0 1.0 11
13 Corn-northern-leafblight 0.90 1.0 0.95 0.90 1.00 0.95 9
14 Grape-blackrot 0.91 0.91 0.91 0.92 1.00 0.96 11
15 Grape-esca-blackmeasles 0.92 0.92 0.92 1.00 0.92 0.96 13
16 Grape-healthy 0.75 1.0 0.9 1.0 1.0 1.0 4
17 Grape-leafblight-isariopsis-Leafspot 1.0 1.0 1.0 1.0 1.0 1.0 10
18 Orange-haunglongbing-citrusgreening 1.0 1.0 1.0 1.0 1.0 1.0 53
19 Peach-bacterialspot 1.0 1.0 1.0 1.0 1.0 1.0 22
20 Peach-healthy 0.75 1.0 0.86 1.0 1.0 1.0 3
21 Pepper-bell-bacterialspot 1.00 0.78 0.88 0.82 1.0 0.90 9
22 Pepper-bell-healthy 0.88 1.00 0.93 1.0 1.0 1.0 14
23 Potato-earlyblight 1.0 1.0 1.0 1.00 0.89 0.94 9
24 Potato-healthy 1.0 1.0 1.0 1.0 1.0 1.0 1
25 Potato-lateblight 1.0 1.0 1.0 1.0 1.0 1.0 9
26 Raspberry-healthy 1.0 1.0 1.0 1.0 1.0 1.0 3
27 Soybean-healthy 1.0 1.0 1.0 1.0 0.98 0.99 49
28 Squash-powdery-mildew 0.94 1.0 0.97 1.0 1.0 1.0 17
29 Strawberry-healthy 1.0 1.0 1.0 1.0 1.0 1.0 4
30 Strawberry-leafscorch 1.0 1.0 1.0 0.91 1.0 0.95 10
31 Tomato-bacterialspot 1.0 0.75 0.86 1.0 0.95 0.97 20
32 Tomato-earlyblight 1.0 0.56 0.71 0.73 0.89 0.80 9
33 Tomato-healthy 0.94 1.0 0.97 1.0 1.0 1.0 15
34 Tomato-lateblight 1.0 0.89 0.94 1.0 0.89 0.94 18
35 Tomato-leafmold 0.58 0.78 0.67 0.89 0.89 0.89 9
36 Tomato-mosaic-virus 1.0 0.67 0.80 1.0 1.0 1.0 3
37 Tomato-septoria-leafspot 0.71 1.00 0.83 0.82 0.82 0.82 17
38 Tomato-spidermites-twospotted 0.75 0.94 0.83 0.89 1.00 0.94 16
39 Tomato-targetspot 0.91 0.770 0.83 1.00 0.92 0.96 13
40 Tomato-yellowleaf-curl-virus 1.0 0.96 0.98 1.00 0.98 0.99 51

Mobile PC
ClassNo

Precision Recall F1 Precision Recall F1 Support
1 Apple-blackrot 1.0 1.0 1.0 1.0 1.0 1.0 6
2 Apple-cedar-rust 1.0 1.0 1.0 1.0 1.0 1.0 2
3 Apple-healthy 1.0 1.0 1.0 1.0 1.0 1.0 15
4 Apple-scab 1.0 1.0 1.0 1.0 1.0 1.0 6
5 Blueberry-healthy 1.0 1.0 1.0 1.0 1.0 1.0 14
6 Cherry-includingsour-healthy 1.0 1.0 1.0 1.0 1.0 1.0 8
7 Cherry-includingsour-powderymildew 1.0 1.0 1.0 1.0 1.0 1.0 10
8 Coffee-healthy 1.0 1.0 1.0 1.0 1.0 1.0 3
9 Coffee-leafrust 1.0 1.0 1.0 1.0 1.0 1.0 11
10 Corn-cercospora-leafspot-grayleafspot 1.0 0.50 0.67 1.0 0.5 0.67 4
11 Corn-commonrust 1.0 1.0 1.0 1.0 1.0 1.0 11
12 Corn-healthy 0.82 1.0 0.9 1.0 1.0 1.0 11
13 Corn-northern-leafblight 0.85 1.0 0.92 0.82 1.0 0.90 9
14 Grape-blackrot 1.0 0.85 0.92 0.85 1.00 0.92 11
15 Grape-esca-blackmeasles 1.0 1.0 1.0 1.0 0.85 0.9 13
16 Grape-healthy 1.0 1.0 1.0 1.0 1.0 1.0 4
17 Grape-leafblight-isariopsis-Leafspot 1.0 1.0 1.0 1.0 1.0 1.0 10
18 Orange-haunglongbing-citrusgreening 1.0 1.0 1.0 1.0 1.0 1.0 53
19 Peach-bacterialspot 1.0 1.0 1.0 1.0 1.0 1.0 22
20 Peach-healthy 1.0 1.0 1.0 1.0 1.0 1.0 3
21 Pepper-bell-bacterialspot 0.90 1.0 0.95 0.82 1.0 0.90 9
22 Pepper-bell-healthy 1.0 1.0 1.0 1.0 1.0 1.0 14
23 Potato-earlyblight 1.0 0.89 0.94 1.0 1.0 1.0 9
24 Potato-healthy 1.0 1.0 1.0 1.0 1.0 1.0 1
25 Potato-lateblight 1.0 1.0 1.0 1.0 1.0 1.0 9
26 Raspberry-healthy 1.0 1.0 1.0 1.0 1.0 1.0 3
27 Soybean-healthy 1.0 1.0 1.0 1.0 1.0 1.0 49
28 Squash-powdery-mildew 1.0 1.0 1.0 1.0 1.0 1.0 17
29 Strawberry-healthy 1.0 1.0 1.0 1.0 1.0 1.0 4
30 Strawberry-leafscorch 1.0 1.0 1.0 1.0 1.0 1.0 10
31 Tomato-bacterialspot 0.94 0.80 0.96 0.95 0.90 0.92 20
32 Tomato-earlyblight 0.75 0.67 0.71 0.78 0.78 0.78 9
33 Tomato-healthy 1.0 0.87 0.93 0.93 0.93 0.93 15
34 Tomato-lateblight 1.00 0.89 0.94 1.00 0.89 0.94 18
35 Tomato-leafmold 0.82 1.00 0.90 1.0 1.0 1.0 9
36 Tomato-mosaic-virus 1.0 1.0 1.0 1.0 1.0 1.0 3
37 Tomato-septoria-leafspot 0.70 1.0 0.82 0.75 0.88 0.81 17
38 Tomato-spidermites-twospotted 1.00 0.81 0.90 1.00 0.94 0.97 16
39 Tomato-targetspot 0.73 0.85 0.79 0.92 0.85 0.88 13
40 Tomato-yellowleaf-curl-virus 1.0 1.0 1.0 1.0 1.0 1.0 51

PCMobile
ClassNo
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Fig. 12 illustrated CPU load per image consumed lower 
CPU load and memory usage on MobilNet compare to 
InceptionV3. While energy consume in heavy state.  
 

 
Fig. 13. MNasNet resource profile 

Fig. 13 illustrated CPU load per image consumed similar 
to MobilNet on CPU load and memory usage on MNasNet. 
While energy consume is low.  

Battery usage on mobile grouped on Fig. 14, which top left 
is MobileNet, top right is MNasNet, and at the bottom is 
InceptionV3. 

 

 
Fig. 14. Battery consumption on Mobilenet, MNasNet, 

and InceptionV3 

Evaluated by conducting experiments on 100 images 
times, recorded the consumption of battery 34.4 mAH for 
InceptionV3, 14.2 mAH for MobileNet, and 16.6 mAH for 
MNasNet. Battery usage is below 1% but in addition to the 
request itself, taking pictures will be added to the amount. 

V. CONCLUSION 

This study evaluated pretrained model with transfer 
learning method that can possibly retraining process much 
lighter at computational cost, so retraining can be performed 
on medium specification workstations with reasonable time 
consumed. 

Time consume to run retraining process with bottleneck 
creation process is only on the first run, conclude 
InceptionV3 processing time required the longest time 
compared to MobileNet and MNasNet, both of which require 
nearly 0.25 times of InceptionV3.  

The output file generated from this retraining process 
showed InceptionV3 is four times bigger than comparing the 
other 2 models. 

The experiments result showed a slight decrease in overall 
accuracy in certain classes. InceptionV3 build a more reliable 
network, with the lowest accuracy loss, with trade-off 
resource consumption and latency far lower than the other 
two networks. Although two other architectures display very 

high performance with a latency level that is not too different 
when tested on a PC or Mobile device <500ms, lacking 
accurate degradation between PCs and mobile devices. 

VI. FUTURE WORK 

The accuracy of each model experienced minor 
degradation from experimental results, whereas InceptionV3 
demands higher resources and latency than others. The 
challenge for future work is how to create a model with the 
same stability, but less resource requirements and less 
latency. 
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