
International Journal of Innovative Technology and Exploring Engineering (IJITEE)
ISSN: 2278-3075 (Online), Volume-9 Issue-2, December 2019

2796

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B6647129219/2019©BEIESP
DOI: 10.35940/ijitee.B6647.129219
Journal Website: www.ijitee.org

Abstract: The implementation of image recognition in

agriculture to detect symptoms of plant disease using deep
learning Convolutional Neural Network (CNN) models are proven
to be highly effective. The computational efficiency by using CNN,
made possible to run the application on mobile device. To optimize
the utilization of mobile device and choosing the most effective
CNN model to run as detection system in mobile device with the
highest accuracy and low resource consumption is proposed in
this paper. In this study, PlantVillage dataset which extended to
coffee leaf, were tested and compared using three CNN models,
two models which specifically designed for mobile, MobileNet and
Mobile Nasnet (MNasNet), and one model that recognized for its
accuracy on personal computer (PC), InceptionV3. The
experiment executed on both mobile and PC found a slightly
degradation on accuracy when the application is running on
mobile. InceptionV3 experienced the most persistence model
compares to MNasNet and MobileNet. Yet, InceptionV3 had
biggest latency time. The final result on mobile device recorded
InceptionV3 achieved highest accuracy of 95.79%, MNasNet
94.87%, and MobileNet 92.83%, while for time latency MobileNet
achieved the lowest with 394.70 ms, MNasnet 430.20 ms, and
InceptionV3 2236.10 ms respectively. It is expected that the
outcome of this study will be of great benefit to farmers as mobile
image recognition would help them analyze the condition of their
plants on site simply by taking a picture of the leaf and running
the experiment on their mobile device.

Keywords: Deep learning, CNN, Pretrained model, TFLite,
Mobile application.

I. INTRODUCTION

Indonesia is among the biggest coffee producers in the
world[1], as stated by the Ministry of the Industry of the
Republic of Indonesia in Table- I, which shows countries
with highest productivity in the world.

Table- I: Biggest four world coffee producers

No Country Production(ton/year)

1 Brazil 2,900,000
2 Vietnam 1,600,000
3 Colombia 840,000
4 Indonesia 639,000

Revised Manuscript Received on December 30, 2019.
* Correspondence Author

Burhanudin Syamsuri, Department of Computer Science, BINUS
Graduate Program - Master of Computer Science, Bina Nusantara
University, Jakarta, Indonesia, 11480.

Gede Putra Kusuma*, Department of Computer Science, BINUS
Graduate Program - Master of Computer Science, Bina Nusantara
University, Jakarta, Indonesia, 11480.

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the
CC-BY-NC-ND license http://creativecommons.org/licenses/by-nc-nd/4.0/

Although being one of the biggest coffee producer,
statistically compared with the other three countries, the
productivity of Indonesian coffee is considered low[2].
Coffee leaf rust contributes significantly in reducing
production and is reported to be the most destructive disease
in coffee plant[3]. This fact leads to a research that can
contribute in detecting early symptoms of leaf disease in
coffee plant.

Object recognition has accomplished significant outcomes
in detecting pattern in image recognition by consolidating
computer vision with an artificial intelligence techniques[4],
that can be used as a tool in agriculture especially for plant
leaf disease classification.

Some studies in leaf disease early detection, especially in
coffee plants, were developed using Hyperspectral Image
System(HIS)[5]–[7]. These technique are widely used in the
last decade[8].

HIS technique obtains a hyperspectral image from the
sensor system in form of camera and spectrograph, by
capturing data visible across near-infrared wavelengths and
supplying narrow spectral channels from the same surface
area[9].

Paper review on advance hyperspectral image techniques
have been published to compare the benefits and limitations
of this potential method[10]. The need of fast computers,
sensitive detectors, and large data storage capacity to analyze
hyperspectral data made HIS costly and complex.

Different techniques in plant disease detection are carried
out by utilizing deep learning CNN model[11]–[15]. The
model has advantages in computational efficiency by using
convolution operations, special integration, and sharing
parameters which made it possible to operate on any mobile
devices[16]. Review paper on deep learning has been
published, concentrated on the size impact and variety of
datasets to oversee how effective deep learning by using
transfer learning methods for plant disease
detection[17]-[18].

Several studies oversee the optimization technic to execute
CNN efficiently on mobile device[19]–[21]. Others uses
Offloading technique by running MobiRNN locally and
resulting significant decrease on latency[22]. It is quite
encouraging to be able to run a plant disease detection system
by running CNN-based model[23].

In plantation sites with limited internet connectivity, an
application that can run on mobile device to perform as a
plant disease detection system, which can be executed locally
without the need to go through the process of sending images
to the server for identification processes, avoiding limitation
on internet connections,

Plant Disease Classification using Lite
Pretrained Deep Convolutional Neural Network

on Android Mobile Device

Burhanudin Syamsuri, Gede Putra Kusuma

https://www.openaccess.nl/en/open-publications
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijitee.B6647.129219&domain=www.ijitee.org

Plant Disease Classification using Lite Pretrained Deep Convolutional Neural Network on Android Mobile
Device

2797

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B6647129219/2019©BEIESP
DOI: 10.35940/ijitee.B6647.129219
Journal Website: www.ijitee.org

and to avoid processing latency the servers in Cloud[24] is
highly benefited for farmers.

In this study, testing and comparison were carried out
through two stages. First, the process of retraining using the
python script from TensorFlow to generate a graph file as
protobuf file. Then the file is reprocessed using TensorFlow
Lite converter to generate a TensorFlow lite flat buffer file
(.lite). The second stage is copying tflite files into mobile and
run the test on the application installed on mobile.

In order to do the performance test on CNN models, this
research utilizes the latest TensorFlow-lite framework, which
optimize implementation of the three CNN architectures,
MobileNet, MNasNet, and InceptionV3 on mobile device.
Android application were built to run the deep learning
application to read tflite file and make predictions.

The two main contributions of this paper are:
1. Evaluating and comparing pre-trained models on PC and
mobile to get the best model conclusions and whether there is
a decreased in accuracy. Also recognize the resources needed
to run applications on mobile such as memory, CPU, power
consumption, and the average time needed in detection
process.
2. Extending a coffee leaf rust dataset by collecting images
both from the internet and in collaboration with Indonesian
Coffee and Cacao Plant Research Centre.

II. RELATED WORKS

Studies with the topic of plant disease classification and
detection utilizing the most common CNN models such as
AlexNet, GoogleNet, CIFAR-10, VGG, and ResNet, using
the Plant Village dataset and focusing on one type of plant
have been conducted by many researchers.

Classification research of diseases in maize plants, using
fine-tuned CNN models GoogLeNet and Cifar10, each
achieved accuracy of 98.9% and 98.8%[11]. The research
which advantageous from deep learning visualization method
to provide transparent information to get explanation and
details of the classification mechanism[13] has been done
with highest accuracy of 99.76% using inceptionV3 model
within 5.64 hours training time, while the shortest time in the
learning process is 0.85 hours with shallow learning type on
squeeznet model, but with lower accuracy of 96.26%.

In research that contributed to the provision of datasets
collected by downloading from the internet and searched by
diseases and plant names in various sources, the images in
dataset classified into 15 classes. After perfecting network
parameters, recorded an overall accuracy 96.3%[14].

Research done by Mohanty, Hughes, and Salathé[15]
evaluated images of plant leaves which distributed in
multi-class labels, resulted overall accuracy varies from
85.53% using AlexNet to 99.34% with experiments on
GoogLeNet variations. The research concluded that
GoogLeNet performs better than AlexNet with the transfer
learning training method.

Research by Brahimi et al[12] compared different learning
methods, shallow models collaborated with their own models
(SVM, Random forest) with deep CNN architectural models
(GoogLeNet and AlexNet). In result, deep model (CNN)
performed better with accuracy 99.19% and macro f1-score
98.52% compare to shallow model with accuracy 95.48%
and macro f1-score 94.19%.

Studies on the impact of data sets and their variations on
the effectiveness of deep learning to detect plant diseases,
lead to many studies using similar tools in a dataset which do
not reproduce the variety of expected conditions in the field.
This study explains why most of the studies have succeeded
in showing near-perfect accuracy such as [13], [15], and [18].

A research named CNNdroid[24] work on
GPU-accelerated execution of trained deep CNN on Android,
Caffe, Theano, and Torch models achieved maximum speed
of 60X and energy saving 130x on mobile devices.

A study based on mobile deep learning on cassava
dataset[23], focused on CNN based model, found that
different input data (image or video) in varied performance
play important part for design in real world applications.

Comparative studies on models such as VGG16, Inception
v4, ResNet, and DensNet[26] using fine-tuning methods in
plant disease detection resulting accuracy tests of 81.83%,
99.66%, 99.75%, and 98.08% respectively.

Research on plant detection using the CNN deep learning
method on mobile devices and specifically for coffee plants
has not been conducted. This study evaluated specific models
of deep learning CNN that can be explicitly run on mobile
devices to help classify plant diseases particularly in coffee
plants, to optimize computing needs and save resources
without reducing the accuracy and privacy of the mobile
device itself.

III. RESEARCH METHODOLOGY

Methodology of this research comprised two primary
stages: retraining and testing. The first stage is the retrain on
pretrained CNN models and the second stage is testing on
both PC and mobile. The illustration in Fig. 1 shows the order
of working process in this research.

Step 7:Test on
Mobile

Step 2:
Retrain

Step 1:- Dataset prep
- Build script

Step 3:
output

protobuf file
(.pb) and
label.txt

Step 5:
TF_Converter

Convert protobuf file
to TF Lite(.lite)

Step 8:
Result

Comparison

Step 6: Embed
to Android

Apps

Step 4: test on PC

St
ag

e
1

St
ag

e
2

Fig. 1. Research methodology

The retraining steps begin at stage 1 with the preparation of
data, collecting image data, and then implementing deep
learning with the method of transfer learning. Stage 2 is the
process of testing the output file from retraining.

A. Retrain Stage

In the retrain process, the system design and fabrication
illustrated in flow chart in Fig. 2.

International Journal of Innovative Technology and Exploring Engineering (IJITEE)
ISSN: 2278-3075 (Online), Volume-9 Issue-2, December 2019

2798

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B6647129219/2019©BEIESP
DOI: 10.35940/ijitee.B6647.129219
Journal Website: www.ijitee.org

D
at

as
et

p

re
p

ar
at

io
n

R
es

ul
t

Tr
ai

ni
ng

Download
Dataset

Split data for 60:20:20 for
train, validation and testing

Build script to Encode /
proses labeling

Dataset Augmentation
option

Resize the input data
to 224x224 or 299x299

Reshape input data

Choose
 CNN Model

Training the neural
network in 30 epoch

Set share parameter,
optimizer and finetune

Learning rate

Loss function calculation
with cross entropy

Protobuf file (.pb) and
lable.txt

end

Start

Fig. 2. Retrain stage process

The training process of CNN's state of the art at this
research conducted by utilizing the TensorFlow open-source
framework, TensorFlow-lite deep learning model, Python
3.6, PyCharm community edition, and Android developer.
This research used a PC with the specifications as stated in
Table- II.

Table- II: PC configuration and specification
No Hardware Specification
1 Memory 32Gb

2 CPU Intel Core i7-8750,
2.20 GHz Gen 8

3 Graphics Processor Unit (GPU) GeForce GTX 1050,
4GB

4 Operating System Ubuntu 18.04 64 bits

A.1. Dataset Preparation
Engineered dataset the PlantVillage done by D. P. Hughes

and M. Salathe[25], with additional two classes of coffee
plant leaves were collected from the internet and in
collaboration with the Indonesian Coffee and Cocoa
Research Center. Data physically separated from the training
composition, validation, and testing with composition 60%
(32,382 Images), 20% (10,756 images), and 20% (10,765
images). Since the testing process in mobile by picking the
image manually, in this research, 5% (522 images) of data is
separated to be tested on PC and mobile with precisely the
same data.

Table- III: PlantVillage dataset with additional two
coffee leaf classes

No Class Name Train Val Test
1 Apple-blackrot 363 120 120
2 Apple-cedar-rust 161 53 53
3 Apple-healthy 956 318 318
4 Apple-scab 367 122 122
5 Blueberry-healthy 873 290 291
6 Cherry-includingsour-healthy 497 165 165
7 Cherry-includingsour-powderymildew 612 203 204
8 Coffee-healthy 116 38 38
9 Coffee-leafrust 683 227 227
10 Corn-cercospora-leafspot-grayleafspot 300 99 99
11 Corn-healthy 676 225 225
12 Corn-commonrust 693 230 231
13 Corn-northern-leafblight 573 191 191
14 Grape-blackrot 687 228 228
15 Grape-esca-blackmeasles 804 267 267
16 Grape-healthy 247 82 82
17 Grape-leafblight-isariopsis-Leafspot 627 208 208
18 Orange-haunglongbing-citrusgreening 3197 1065 1065
19 Peach-bacterialspot 1335 444 444
20 Peach-healthy 210 70 70
21 Pepper-bell-bacterialspot 580 193 193
22 Pepper-bell-healthy 859 286 285
23 Potato-earlyblight 582 193 194
24 Potato-healthy 90 29 30
25 Potato-lateblight 582 193 194
26 Raspberry-healthy 216 71 72
27 Soybean-healthy 2955 984 985

28 Squash-powdery-mildew 1078 350 348
29 Strawberry-healthy 266 88 88
30 Strawberry-leafscorch 645 214 214
31 Tomato-bacterialspot 1236 411 411
32 Tomato-earlyblight 582 193 194
33 Tomato-healthy 924 308 308
34 Tomato-lateblight 1110 369 370
35 Tomato-leafmold 554 184 184
36 Tomato-mosaic-virus 217 72 72
37 Tomato-septoria-leafspot 1029 342 343
38 Tomato-spidermites-twospotted 974 324 324
39 Tomato-targetspot 816 271 272
40 Tomato-yellowleaf-curl-virus 3110 1036 1036
 Total 32382 10756 10765

A.2.Transfer Learning
This research introduced a method of transfer learning

from pretrained models. The concept behind transfer learning
is a model trained on a large-scale and general dataset,
namely Imagenet. The aim of this model is to be functioning
effectively as a generic template for the visual world by
taking advantage of this feature map without starting from the
beginning of training models on large scale datasets. The
choice of model used is specifically designed for mobile and
one ordinary model. This study also fine-tuned the
pre-trained models. Fine tuning is a term of transfer learning
where information acquired during training is used to
perform assignments or other similar domains[26]. Transfer
learning consists of two phases, bottleneck creation and
training. At first phase, all images on the disk will be
analyzed and calculated. Then the bottle neck value of each
image will be stored. “Bottleneck” is unofficial term which

often used to name layers right before the last layer that does
the classification. When the bottleneck creation is completed,
the actual training from the top layer of the network begins.
The output will show cross entropy, accuracy, and validation
of accuracy.
A.3. CNN Architecture

All CNN models generally follow the same architecture, as
illustrated in Fig. 3, using images as input, follow by
convolutional operations, pooling operations, and several
fully connected layers.

Fig. 3. CNN architecture

Three pre-trained CNN architectures were chosen on this
study, a pre-trained model stored in Cloud, so that it is
reusable and downloadable from the framework provider.

 MobileNet

The paper[27] explained that MobileNetV2 architecture
contains an initial full convolution layer with 32 filters, 19
residual bottleneck layers. ReLU6 used in low-precision
measurements as non-linearity due to its robustness.
MobilNet used kernel size 3x3, batch normalization, and
dropout.

MobileNet is an architecture created to meet the
application design needs of mobile and embedded devices.

https://www.openaccess.nl/en/open-publications

Plant Disease Classification using Lite Pretrained Deep Convolutional Neural Network on Android Mobile
Device

2799

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B6647129219/2019©BEIESP
DOI: 10.35940/ijitee.B6647.129219
Journal Website: www.ijitee.org

MobileNet has an efficient network and is a collection of
networks consisting of two hyper-parameters to build a
model with minimal and low latency. MobileNets are made
with a depthwise semi-convolutional method to reduce the
calculation of the first few layers.

Depthwise separable convolutional explained in paper[28]
as a form of factored convolution, using factorizes standard
convolution into deep convolution and with stride 1×1
convolution namely pointwise convolution, to collaborate
output with deep convolutional.

This method will reduce the calculation and size of the
model drastically. The pretrained mobilenet_v2_1.4 model
was used in this study, with a top 5 accuracy of 92%.
 MNasNet

Described in the paper[29], MNAS (Mobile Neural
Architecture Automated Search) with low latency as the main
goal so the search can identify a model that achieves a good
exchange between accuracy and latency.

MNasNet is designed for mobile devices that are resource
efficient with an approach, incorporates latency model by
using the factorized hierarchical search space method where
the network layer is classified into several predefined
frameworks, called block.

Each block contains several repetitive identical layer
variables, which has stride 2 and stride 1. Stride 2 at the first
layer only if the input/output resolution is different and stride
1 for other layers. MNasNet pretrained produced top-5
accuracy of 92.55%, with latency of 389 ms.
 InceptionV3

The first concept introduced by Szegedy et al. in 2015[30],
proposed InceptionV3 architecture with an update to the
inception module to increases the accuracy of the ImageNet
classification in the GoogLeNet architecture. GoogleNet's
next version linked to Inception vN with N stand for version
number. In the paper outline[31], InceptionV3 added factors
in the third iteration. Every module's output size is the next
input size. InceptionV3 used variants of reduction techniques
to minimize grid sizes between the Inception blocks where
applicable. This architecture collaborates design activation
with residual connection to accelerate initial network
training. Inception modules consist of layered integration and
convolution layers multiple of sizes such as 1x1, 3x3, and
5x5.

The aspect that stands out from the Inception module is the
use of bottleneck layer, which is convolution 1x1. Bottleneck
layers reduce calculation requirements. Additionally, a
merging layer is used in modules to reduce dimensions.

B. Testing Stage

The testing stage on mobile device and PC illustrated in
Fig. 4.

Step 3: Convert
TF_CONVERT
To TFLITE(.lite)

Step 5: Testing on Mobile

Step 1: Copy Retrain
oupu t

(output_graph.pb)
and label.txt to PC

Step 4: Embed to
Andorid Apss

Step 2: Testing on PC

Step 6: Compare the result
with model evaluation and

conf matrix

Fig. 4. Testing stage process

After completing retraining the model which generate a
graph file defined as google protobuf file (.pb) and output text
label (.txt). The file will be tested on PC during the training.
For mobile testing, the graph file will be converted to TFLite
file and copied into mobile device.

The conversion process to optimize files running on
mobile devices, files generated from the training process, for
example, "retrained_graph.pb" will be converted to
"retrained_graph.lite" using the "TensorFlow Lite
Optimizing Converter" program or tflite_convert which is a
new graphics converter now included with the TensorFlow
installation.

TensorFlow uses the Buffer Protocol while TFLite uses
FlatBuffers. The main benefit of FlatBuffers is that it can be
mapped in memory and used directly from disk without being
loaded and parsed. So that startup time is much faster and
gives the operating system the choice to load and unload
pages needed from the model file to avoid application
shutdown when it runs out of memory. The converted file
will then be copied to the assets folder on mobile.

For the evaluation purposes on mobile, a mobile
application was built by modifying the application sample
from Tensorflow, as illustrated in Fig. 5.

Fig. 5. Mobile application testing

To determine resources consumption, this study used an
Android profiler, a build-in tool from Android Studio, to
assess the memory and CPU load requirements during peak
time on the prediction process. While for the battery resource
requirements measured using the AccuBatery application.
The evaluation process will use mobile devices with
specifications shown in Table- IV.

Table- IV: Mobile device spec
No Hardware Specification
1 Memory 4 GB

2 Processor (CPU) Quad-core Snapdragon 820
4 Operating system Android 8.0 Marshmallow
5 Rear Camera 12MP

IV. EXPERIMENTS

A. Experimental Design

The experiment in this study is divided into two stages,
retraining and testing.

International Journal of Innovative Technology and Exploring Engineering (IJITEE)
ISSN: 2278-3075 (Online), Volume-9 Issue-2, December 2019

2800

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B6647129219/2019©BEIESP
DOI: 10.35940/ijitee.B6647.129219
Journal Website: www.ijitee.org

In retraining stage, the evaluation and comparison of
accuracy and loss time consumed of pretrained architecture is
counted during the training. The output file generated is
graph file (.pb) which will be converted to tflite file (.lite) for
the purpose of mobile evaluation.

The second stage is running the evaluation of testing data
on PC and testing performance on mobile. The result is
measured on both devices for resource requirements such as
peak memory size, CPU load at peak, and battery usage.

The result is used to set the minimum requirements for
mobile hardware specification and which model is the most
effective to be used in mobile devices.

The set-up environment of this study is a PC or
workstation equipped with tools to run deep learning, python
3.6, TensorFlow, OpenCV, Keras, Pandas, NumPy, and
seaborn modules. Meanwhile for mobile device, a mobile
application was built using Android developer. The
application offers two choices to determine the image source,
whether to take pictures using the camera or to get pictures
from image directory. Output generated time consumption

per image, confidence percentage prediction, and predicted
label.A comparison test between PC and mobile is performed
using the same separated image. This experiment aims to
assess accuracy, latency, and mobile resource consumption.

Testing on PC performed by running image
label_image.py script from TensorFlow over images and
manually checked on mobile using built plant disease
application. The result will be sent to online matrix
calculator[32]. Until beginning of the test, the mobile device
battery will be fully charged and restarted to get the baseline
and to ensure no other application are running.

B. Experimental Result

B.1. Retraining on PC
The results of retraining stage are summarized in Table- V.

Run in 30 epochs, by equating all hyperparameters, using
learning rate 0.01 for MobileNet and MNasNet and learning
rate 0.1 for InceptionV3, resulting final training and
validation.

Table- V: Retraining result accuracy, loss, output, and time

The final test and categorical cross entropy calculation in

this study showed MobileNet leading over two other models
with slightly different points.

At the final evaluation, MNasNet recorded 97% highest
overall accuracy followed by 95.10% of MobileNet, and
94.80% of InceptionV3. While loss on validation recorded
InceptionV3, MNasNet, and MobileNet respectively from the
lowest to the highest. From output file MobileNet generated
24.10 MB, MNasNet 24.64 MB, and InceptionV3 85.69MB.

The training time difference between the two models
specifically designed for mobile device (MobileNet and
MNasNet) and InceptionV3 model is quite significant which
InceptionV3 took 3x longer than the other two. Performance
of each model in training process on dataset training,
validation, and testing graphically illustrated by grouped on
Fig. 6 for accuracy and Fig. 7 on cross entropy performance.

Fig. 6. Accuracy performance on each model

 In Fig. 6 accuracy of MNasNet and InceptionV3 indicates
better performance than MobileNet. MNasnet and
InceptionV3 more consistent between training and
validation. Meanwhile in Fig. 7, loss value InceptionV3 is the
lowest compared to MNasNet and MobileNet. Both graphic
images show that models performed no overfitting indicated.

Fig. 7. Categorical-cross entropy loss on each model

The second experiment performed after the retraining phase
is the testing of models by separating 20 percent of the data.
This experiment aims to determine the level of accuracy per
plant class, presented classification metrics to display the
reliability, recall, and F1-score. The result presented in

Table- VI.
Table- VI: Classification performance summary

Models Weighted Average
Precision Recall F1-score

MobileNet 0.95 0.94 0.95
MNasNet 0.97 0.96 0.96
InceptionV3 0.96 0.96 0.96

Model and Configuration

Accuracy
(%)

Loss Output File
(MB)

Time/epoch
(Minutes)

 Train Valid Test Train Valid .pb .lite

MobileNet 0.01 60:20:20 95.41% 94.99% 95.10% 0.1179 0.1855 24.10 23.96 3.2

MNasNet 0.01 60:20:20 97.55% 95.78% 97.00% 0.1067 0.1205 24.64 24.27 3.7

InceptionV3 0.1 60:20:20 96.20% 96.17% 94.80% 0.0257 0.0208 85.69 85.39 8.6

https://www.openaccess.nl/en/open-publications

Plant Disease Classification using Lite Pretrained Deep Convolutional Neural Network on Android Mobile
Device

2801

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B6647129219/2019©BEIESP
DOI: 10.35940/ijitee.B6647.129219
Journal Website: www.ijitee.org

B.2. Test Comparison PC vs Mobile
 Accuracy and Latency on Mobile vs PC

An experiment on performance comparison between PC
and mobile using 522 images indicated in Table- VII with
overall accuracy and average latency.

Table- VII: Accuracy and latency by models on PC and
mobile

Models Accuracy
(%)

Average Latency
(ms)

PC Mobile PC Mobile

MobileNet 95.32 92.83 220.90 394.70

MNasNet 97.32 94.87 348.30 430.20

InceptionV3 96.93 95.79 376.83 2236.10

Figures in Table- VII showed assessment on mobile
recorded some loss of accuracy while MobileNet and
MNasNet had a slightly higher latency level. InceptionV3
encountered the lowest loss of 1.14% with MobileNet 2.45%,
and MNasNet 2.5%. Meanwhile, InceptionV3 showed
significantly different latency levels between mobile and PC.
 Confusion Matrix on PC

Performance of classification output for each class and
result test model on PC illustrated with confusion matrix in
Fig. 8 – Fig. 10. Y axis represent true labels and Y axis
predicted labels.

Fig. 8. MobileNet confusion matrix on PC

Fig. 8 shows good performance on most of the class, while
two classes, coffee healthy and tomato, showed slightly poor
in overall performance.

Fig. 9. MNasNet confusion matrix on PC

Fig. 9 shows that class tomato get better performance on
MNasNet, while class coffee healthy shows slightly
decreased performance.

Fig. 10. InceptionV3 confusion matrix on PC

From Fig. 8 – Fig. 10 shows that the classification

performance of each class has a similar pattern, tomato
classes recorded poor performance results while the other
classes recorded good performance.
 Classification Performance Comparison
Experiment to test and compare the output file generated
from retraining process been done with result on Table- VIII
to Table- X.

Table- VIII: Comparison performance each class on
MobileNet

Precision Recall F1 Score Precision Recall F1 Support
1 Apple-blackrot 1.0 1.0 1.0 1.0 1.0 1.0 6
2 Apple-cedar-rust 1.0 1.0 1.0 1.0 1.0 1.0 2
3 Apple-healthy 0.94 1.0 1.0 1.0 1.0 1.0 15
4 Apple-scab 0.9 1.0 0.9 1.0 1.0 1.0 6
5 Blueberry-healthy 1.0 1.0 1.0 1.0 1.0 1.0 14
6 Cherry-includingsour-healthy 1.0 1.0 1.0 1.0 1.0 1.0 8
7 Cherry-includingsour-powderymildew 1.0 1.0 1.0 1.0 1.0 1.0 10
8 Coffee-healthy 1.0 1.0 1.0 1.0 1.0 1.0 3
9 Coffee-leafrust 1.0 1.0 1.0 1.0 1.0 1.0 11
10 Corn-cercospora-leafspot-grayleafspot 1.0 0.75 0.86 0.75 0.75 0.75 4
11 Corn-commonrust 0.9 1.0 1.0 1.0 1.0 1.0 11
12 Corn-healthy 1.00 1.0 1.0 1.0 1.0 1.0 11
13 Corn-northern-leafblight 1.00 1.0 1.00 0.89 0.89 0.89 9
14 Grape-blackrot 0.9 1.0 0.96 0.91 0.91 0.91 11
15 Grape-esca-blackmeasles 1.0 0.92 0.96 0.92 0.92 0.92 13
16 Grape-healthy 1.0 1.0 1.0 1.0 1.0 1.0 4
17 Grape-leafblight-isariopsis-Leafspot 1.0 0.70 0.82 1.0 1.0 1.0 10
18 Orange-haunglongbing-citrusgreening 1.0 1.0 1.00 1.0 1.0 1.0 53
19 Peach-bacterialspot 1.0 0.91 0.95 1.0 1.0 1.0 22
20 Peach-healthy 0.5 1.0 0.67 1.0 1.0 1.0 3
21 Pepper-bell-bacterialspot 0.78 0.78 0.78 0.69 1.0 0.82 9
22 Pepper-bell-healthy 0.93 0.93 0.93 1.0 1.0 1.0 14
23 Potato-earlyblight 0.75 0.67 0.71 0.82 1.0 1.0 9
24 Potato-healthy 1.0 1.00 1.00 1.0 1.0 1.0 1
25 Potato-lateblight 0.67 0.89 0.76 0.90 1.0 0.95 9
26 Raspberry-healthy 1.0 1.00 1.0 1.0 1.0 1.0 3
27 Soybean-healthy 1.0 1.00 1.0 1.0 0.96 0.98 49
28 Squash-powdery-mildew 1.0 1.00 1.0 1.0 1.0 1.0 17
29 Strawberry-healthy 1.0 1.00 1.0 1.0 1.0 1.0 4
30 Strawberry-leafscorch 0.88 0.70 0.78 1.0 0.80 0.89 10
31 Tomato-bacterialspot 0.95 0.90 0.92 1.0 1.0 1.0 20
32 Tomato-earlyblight 0.80 0.44 0.57 0.86 0.67 0.75 9
33 Tomato-healthy 0.94 1.00 0.97 1.0 0.87 0.93 15
34 Tomato-lateblight 0.89 0.89 0.89 1.0 0.89 0.84 18
35 Tomato-leafmold 0.75 1.00 0.86 0.8 0.89 0.84 9
36 Tomato-mosaic-virus 1.0 0.67 0.80 1.0 1.0 1.0 3
37 Tomato-septoria-leafspot 0.79 0.88 0.83 0.84 0.94 0.90 17
38 Tomato-spidermites-twospotted 0.57 1.00 0.7 0.93 0.88 0.90 16
39 Tomato-targetspot 0.50 0.077 0.13 0.80 0.92 0.86 13
40 Tomato-yellowleaf-curl-virus 1.0 0.98 0.99 1.00 0.98 0.99 51

Mobile PC
ClassNo

International Journal of Innovative Technology and Exploring Engineering (IJITEE)
ISSN: 2278-3075 (Online), Volume-9 Issue-2, December 2019

2802

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B6647129219/2019©BEIESP
DOI: 10.35940/ijitee.B6647.129219
Journal Website: www.ijitee.org

From the Table- VIII, some class experienced accuracy
degradation on mobile such apple healthy and tomato class in
overall, and very poor performance on tomato-targetspot
while coffee, corn, grape and soybean experienced better
performance on mobile.

Table- IX: Comparison performance each class on MNasNet

Table- IX show that the result on MNasNet evenly

distributed slight degradation on every class compared to
MobileNet which had one class very poor performance.
Hence in overall MNasNet performance is better than
MobileNet.

Table X: Comparison performance each class on
InceptionV3

Table- X, shows that InceptionV3 performance both

mobile and PC experienced same performance in each class,
it made InceptionV3 considered the most robust model but
with trade-off in resource and latency.

Comparison performance score for each class and model
summarized on Table- XI.

Table- XI: Classification performance comparison
summary on PC and mobile by average

Model

PC Mobile

Avg
Precision

Avg
Recall

Avg
F1-score

Avg
Precision

Avg
Recall

Avg
F1-score

MobileNet 0.95 0.96 0.95 0.92 0.91 0.90

MNasNet 0.97 0.97 0.97 0.95 0.93 0.94

InceptionV3 0.97 0.96 0.96 0.96 0.95 0.96

Above figures shows average precision, recall, and
F1-score on PC higher than mobile, which mean there is
slightly degradation on performance in mobile.

 Mobile Device Resource Consumption

The experiment to determine resource consumption
needed can be seen in Table- XII.

Table- XII: Resource consumption

Model

Resource Consumption

Memory
(peak)

CPU Load
(peak)

%

Battery

MobileNet 134 25.1 14.2

MNasNet 132 23.2 16.6

InceptionV3 331 43.5 34.3

The figure above shows MobileNet and MNasNet require
fewer resources, while InceptionV3 uses nearly half of the
other two models. An experiment to detect resource
consumption on Android profiler-captured mobile devices,
capture CPU load on green at the top, memory usage on blue
in the middle, and energy usage graphs at the bottom, shown
in figures below using a PC and the Mobile is in Fig. 11 – Fig.
13 and summarized in Table- XII above.

Fig. 11. Inception v3 resource profile

On Fig. 11, illustrated CPU load per image consumed
highest CPU load and memory usage on InceptionV3 but
with low energy consumed.

Fig. 12. MobileNet resource profile

Precision Recall F1 Score Precision Recall F1 Support
1 Apple-blackrot 1.0 0.83 0.91 1.0 1.0 1.0 6
2 Apple-cedar-rust 1.0 1.0 1.0 1.0 1.0 1.0 2
3 Apple-healthy 1.0 1.0 1.0 1.0 1.0 1.0 15
4 Apple-scab 1.0 1.0 1.0 1.0 1.0 1.0 6
5 Blueberry-healthy 1.0 1.0 1.0 1.0 1.0 1.0 14
6 Cherry-includingsour-healthy 1.0 0.88 0.93 1.0 1.0 1.0 8
7 Cherry-includingsour-powderymildew 1.0 1.0 1.0 1.0 1.0 1.0 10
8 Coffee-healthy 1.0 1.0 1.0 1.0 1.0 1.0 3
9 Coffee-leafrust 1.0 1.0 1.0 1.0 1.0 1.0 11
10 Corn-cercospora-leafspot-grayleafspot 1.0 0.75 0.86 1.00 0.75 0.86 4
11 Corn-commonrust 1.0 1.0 1.0 1.0 1.0 1.0 11
12 Corn-healthy 1.0 1.0 1.0 1.0 1.0 1.0 11
13 Corn-northern-leafblight 0.90 1.0 0.95 0.90 1.00 0.95 9
14 Grape-blackrot 0.91 0.91 0.91 0.92 1.00 0.96 11
15 Grape-esca-blackmeasles 0.92 0.92 0.92 1.00 0.92 0.96 13
16 Grape-healthy 0.75 1.0 0.9 1.0 1.0 1.0 4
17 Grape-leafblight-isariopsis-Leafspot 1.0 1.0 1.0 1.0 1.0 1.0 10
18 Orange-haunglongbing-citrusgreening 1.0 1.0 1.0 1.0 1.0 1.0 53
19 Peach-bacterialspot 1.0 1.0 1.0 1.0 1.0 1.0 22
20 Peach-healthy 0.75 1.0 0.86 1.0 1.0 1.0 3
21 Pepper-bell-bacterialspot 1.00 0.78 0.88 0.82 1.0 0.90 9
22 Pepper-bell-healthy 0.88 1.00 0.93 1.0 1.0 1.0 14
23 Potato-earlyblight 1.0 1.0 1.0 1.00 0.89 0.94 9
24 Potato-healthy 1.0 1.0 1.0 1.0 1.0 1.0 1
25 Potato-lateblight 1.0 1.0 1.0 1.0 1.0 1.0 9
26 Raspberry-healthy 1.0 1.0 1.0 1.0 1.0 1.0 3
27 Soybean-healthy 1.0 1.0 1.0 1.0 0.98 0.99 49
28 Squash-powdery-mildew 0.94 1.0 0.97 1.0 1.0 1.0 17
29 Strawberry-healthy 1.0 1.0 1.0 1.0 1.0 1.0 4
30 Strawberry-leafscorch 1.0 1.0 1.0 0.91 1.0 0.95 10
31 Tomato-bacterialspot 1.0 0.75 0.86 1.0 0.95 0.97 20
32 Tomato-earlyblight 1.0 0.56 0.71 0.73 0.89 0.80 9
33 Tomato-healthy 0.94 1.0 0.97 1.0 1.0 1.0 15
34 Tomato-lateblight 1.0 0.89 0.94 1.0 0.89 0.94 18
35 Tomato-leafmold 0.58 0.78 0.67 0.89 0.89 0.89 9
36 Tomato-mosaic-virus 1.0 0.67 0.80 1.0 1.0 1.0 3
37 Tomato-septoria-leafspot 0.71 1.00 0.83 0.82 0.82 0.82 17
38 Tomato-spidermites-twospotted 0.75 0.94 0.83 0.89 1.00 0.94 16
39 Tomato-targetspot 0.91 0.770 0.83 1.00 0.92 0.96 13
40 Tomato-yellowleaf-curl-virus 1.0 0.96 0.98 1.00 0.98 0.99 51

Mobile PC
ClassNo

Precision Recall F1 Precision Recall F1 Support
1 Apple-blackrot 1.0 1.0 1.0 1.0 1.0 1.0 6
2 Apple-cedar-rust 1.0 1.0 1.0 1.0 1.0 1.0 2
3 Apple-healthy 1.0 1.0 1.0 1.0 1.0 1.0 15
4 Apple-scab 1.0 1.0 1.0 1.0 1.0 1.0 6
5 Blueberry-healthy 1.0 1.0 1.0 1.0 1.0 1.0 14
6 Cherry-includingsour-healthy 1.0 1.0 1.0 1.0 1.0 1.0 8
7 Cherry-includingsour-powderymildew 1.0 1.0 1.0 1.0 1.0 1.0 10
8 Coffee-healthy 1.0 1.0 1.0 1.0 1.0 1.0 3
9 Coffee-leafrust 1.0 1.0 1.0 1.0 1.0 1.0 11
10 Corn-cercospora-leafspot-grayleafspot 1.0 0.50 0.67 1.0 0.5 0.67 4
11 Corn-commonrust 1.0 1.0 1.0 1.0 1.0 1.0 11
12 Corn-healthy 0.82 1.0 0.9 1.0 1.0 1.0 11
13 Corn-northern-leafblight 0.85 1.0 0.92 0.82 1.0 0.90 9
14 Grape-blackrot 1.0 0.85 0.92 0.85 1.00 0.92 11
15 Grape-esca-blackmeasles 1.0 1.0 1.0 1.0 0.85 0.9 13
16 Grape-healthy 1.0 1.0 1.0 1.0 1.0 1.0 4
17 Grape-leafblight-isariopsis-Leafspot 1.0 1.0 1.0 1.0 1.0 1.0 10
18 Orange-haunglongbing-citrusgreening 1.0 1.0 1.0 1.0 1.0 1.0 53
19 Peach-bacterialspot 1.0 1.0 1.0 1.0 1.0 1.0 22
20 Peach-healthy 1.0 1.0 1.0 1.0 1.0 1.0 3
21 Pepper-bell-bacterialspot 0.90 1.0 0.95 0.82 1.0 0.90 9
22 Pepper-bell-healthy 1.0 1.0 1.0 1.0 1.0 1.0 14
23 Potato-earlyblight 1.0 0.89 0.94 1.0 1.0 1.0 9
24 Potato-healthy 1.0 1.0 1.0 1.0 1.0 1.0 1
25 Potato-lateblight 1.0 1.0 1.0 1.0 1.0 1.0 9
26 Raspberry-healthy 1.0 1.0 1.0 1.0 1.0 1.0 3
27 Soybean-healthy 1.0 1.0 1.0 1.0 1.0 1.0 49
28 Squash-powdery-mildew 1.0 1.0 1.0 1.0 1.0 1.0 17
29 Strawberry-healthy 1.0 1.0 1.0 1.0 1.0 1.0 4
30 Strawberry-leafscorch 1.0 1.0 1.0 1.0 1.0 1.0 10
31 Tomato-bacterialspot 0.94 0.80 0.96 0.95 0.90 0.92 20
32 Tomato-earlyblight 0.75 0.67 0.71 0.78 0.78 0.78 9
33 Tomato-healthy 1.0 0.87 0.93 0.93 0.93 0.93 15
34 Tomato-lateblight 1.00 0.89 0.94 1.00 0.89 0.94 18
35 Tomato-leafmold 0.82 1.00 0.90 1.0 1.0 1.0 9
36 Tomato-mosaic-virus 1.0 1.0 1.0 1.0 1.0 1.0 3
37 Tomato-septoria-leafspot 0.70 1.0 0.82 0.75 0.88 0.81 17
38 Tomato-spidermites-twospotted 1.00 0.81 0.90 1.00 0.94 0.97 16
39 Tomato-targetspot 0.73 0.85 0.79 0.92 0.85 0.88 13
40 Tomato-yellowleaf-curl-virus 1.0 1.0 1.0 1.0 1.0 1.0 51

PCMobile
ClassNo

https://www.openaccess.nl/en/open-publications

Plant Disease Classification using Lite Pretrained Deep Convolutional Neural Network on Android Mobile
Device

2803

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B6647129219/2019©BEIESP
DOI: 10.35940/ijitee.B6647.129219
Journal Website: www.ijitee.org

Fig. 12 illustrated CPU load per image consumed lower
CPU load and memory usage on MobilNet compare to
InceptionV3. While energy consume in heavy state.

Fig. 13. MNasNet resource profile

Fig. 13 illustrated CPU load per image consumed similar
to MobilNet on CPU load and memory usage on MNasNet.
While energy consume is low.

Battery usage on mobile grouped on Fig. 14, which top left
is MobileNet, top right is MNasNet, and at the bottom is
InceptionV3.

Fig. 14. Battery consumption on Mobilenet, MNasNet,

and InceptionV3

Evaluated by conducting experiments on 100 images
times, recorded the consumption of battery 34.4 mAH for
InceptionV3, 14.2 mAH for MobileNet, and 16.6 mAH for
MNasNet. Battery usage is below 1% but in addition to the
request itself, taking pictures will be added to the amount.

V. CONCLUSION

This study evaluated pretrained model with transfer
learning method that can possibly retraining process much
lighter at computational cost, so retraining can be performed
on medium specification workstations with reasonable time
consumed.

Time consume to run retraining process with bottleneck
creation process is only on the first run, conclude
InceptionV3 processing time required the longest time
compared to MobileNet and MNasNet, both of which require
nearly 0.25 times of InceptionV3.

The output file generated from this retraining process
showed InceptionV3 is four times bigger than comparing the
other 2 models.

The experiments result showed a slight decrease in overall
accuracy in certain classes. InceptionV3 build a more reliable
network, with the lowest accuracy loss, with trade-off
resource consumption and latency far lower than the other
two networks. Although two other architectures display very

high performance with a latency level that is not too different
when tested on a PC or Mobile device <500ms, lacking
accurate degradation between PCs and mobile devices.

VI. FUTURE WORK

The accuracy of each model experienced minor
degradation from experimental results, whereas InceptionV3
demands higher resources and latency than others. The
challenge for future work is how to create a model with the
same stability, but less resource requirements and less
latency.

REFERENCES

1. KOMINFO, “Rayakan Hari Kopi, Kemenperin Terus Tingkatkan
Ekspor Kopi Nasional,” 2017. [Online]. Available:

https://kominfo.go.id/content/detail/10775/rayakan-hari-kopi-kemenp
erin-terus-tingkatkan-ekspor-kopi-nasional/0/artikel_gpr. [Accessed:
15-Dec-2018].

2. M. Mahfud, N. Siti, Ismiyati, and Ardiansyah, “Kajian penerapan
teknologi produksi pada usahatani kopi robusta di lokasi prima tani
kabupaten pasuruan,” J. Pengkaj. dan Pengemb. Teknol. Pertan., vol.
13, no. 2, 2010, pp. 141–147.

3. G. N. Agrios, Plat Pathology, Third. Academic Press, 1988.
4. D. I. Patrício and R. Rieder, “Computer vision and artificial

intelligence in precision agriculture for grain crops: A systematic
review,” Comput. Electron. Agric., vol. 153, no. June, pp. 69–81, 2018.

5. W. Castro, J. Oblitas, J. Maicelo, and H. Avila-George, “Evaluation of

Expert Systems Techniques for Classifying Different Stages of Coffee
Rust Infection in Hyperspectral Images,” Int. J. Comput. Intell. Syst.,
vol. 11, no. 1, p. 86, 2018.

6. A. Chemura, O. Mutanga, and T. Dube, “Separability of coffee leaf
rust infection levels with machine learning methods at Sentinel-2 MSI
spectral resolutions,” Precis. Agric., vol. 18, no. 5, pp. 859–881, 2016.

7. A. Chemura, O. Mutanga, M. Sibanda, and P. Chidoko, “Machine
learning prediction of coffee rust severity on leaves using
spectroradiometer data,” Trop. Plant Pathol., vol. 43, no. 2, pp.
117–127, 2018.

8. K. Golhani, S. K. Balasundram, G. Vadamalai, and B. Pradhan, “A

review of neural networks in plant disease detection using
hyperspectral data,” Inf. Process. Agric., vol. 5, no. 3, pp. 354–371,
2018.

9. P. Ghamisi, J. Plaza, Y. Chen, J. Li, and A. J. Plaza, “Advanced

Spectral Classifiers for Hyperspectral Images: A review,” IEEE
Geosci. Remote Sens. Mag., vol. 5, no. 1, pp. 8–32, 2017.

10. S. Sankaran, A. Mishra, R. Ehsani, and C. Davis, “A review of

advanced techniques for detecting plant diseases,” Comput. Electron.
Agric., vol. 72, no. 1, pp. 1–13, 2010.

11. X. Zhang, Y. Qiao, F. Meng, C. Fan, and M. Zhang, “Identification of

maize leaf diseases using improved deep convolutional neural
networks,” IEEE Access, vol. 6, pp. 30370–30377, 2018.

12. M. Brahimi, K. Boukhalfa, and A. Moussaoui, “Deep Learning for
Tomato Diseases: Classification and Symptoms Visualization,” Appl.
Artif. Intell., vol. 31, no. 4, pp. 299–315, 2017.

13. M. Brahimi, M. Arsenovic, S. Laraba, S. Sladojevic, K. Boukhalfa,
and A. Moussaoui, “Deep Learning for Plant Diseases: Detection and

Saliency Map Visualisation,” Comput. Econ., pp. 1–21, 2018.
14. S. Sladojevic, M. Arsenovic, A. Anderla, D. Culibrk, and D.

Stefanovic, “Deep Neural Networks Based Recognition of Plant

Diseases by Leaf Image Classification,” Comput. Intell. Neurosci., vol.
2016, p. 11, 2016.

15. S. P. Mohanty, D. P. Hughes, and M. Salathé, “Using Deep Learning

for Image-Based Plant Disease Detection,” vol. 7, no. September, pp.

1–10, 2016.
16. Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” vol. 521, 2015.
17. J. Garcia and A. Barbedo, “Impact of dataset size and variety on the

effectiveness of deep learning and transfer learning for plant disease
classification,” Comput. Electron. Agric., vol. 153, no. August, 2018,
pp. 46–53.

18. K. P. Ferentinos, “Deep learning models for plant disease detection and
diagnosis,” Comput. Electron. Agric., vol. 145, no. September 2017,
pp. 311–318

19. K. Yanai, R. Tanno, and K. Okamoto, “Efficient Mobile
Implementation of A CNN-based Object Recognition System,” pp.

362–366, 2016.

International Journal of Innovative Technology and Exploring Engineering (IJITEE)
ISSN: 2278-3075 (Online), Volume-9 Issue-2, December 2019

2804

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B6647129219/2019©BEIESP
DOI: 10.35940/ijitee.B6647.129219
Journal Website: www.ijitee.org

20. L. N. Huynh, Y. Lee, and R. K. Balan, “DeepMon: Mobile GPU-based
Deep Learning Framework for Continuous Vision Applications,” Proc.
15th Annu. Int. Conf. Mob. Syst. Appl. Serv. - MobiSys ’17, pp.
82–95, 2017.

21. M. Ham et al., “NNStreamer: Stream Processing Paradigm for Neural
Networks, Toward Efficient Development and Execution of
On-Device AI Applications,” 2019.

22. Q. Cao, N. Balasubramanian, and A. Balasubramanian, “MobiRNN:
Efficient Recurrent Neural Network Execution on Mobile GPU,” pp.

1–6, 2017.
23. A. Ramcharan et al., “A Mobile-Based Deep Learning Model for

Cassava Disease Diagnosis,” Front. Plant Sci., vol. 10, no. March, pp.
1–8, 2019.

24. S. Salar, L. Oskouei, H. Golestani, and M. Hashemi, “CNNdroid :
GPU-Accelerated Execution of Trained Deep Convolutional Neural
Networks on Android Comparing Mobile and Desktop GPUs,” in

Proceedings of the 24th ACM international conference on Multimedia,
2016, pp. 1201–1205.

25. D. P. Hughes and M. Salathe, “An open access repository of images on

plant health to enable the development of mobile disease diagnostics,”
ArXiv, 2015.

26. E. C. Too, L. Yujian, S. Njuki, and L. Yingchun, “A comparative

study of fine-tuning deep learning models for plant disease
identification,” Compututer and Electronic in Agriculture, vol. 161, no.
February, 2019, pp. 272–279.

27. M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“MobileNetV2: Inverted Residuals and Linear Bottlenecks,” 2018.

28. A. G. Howard et al., “MobileNets: Efficient Convolutional Neural
Networks for Mobile Vision Applications,” 2017.

29. M. Tan, B. Chen, R. Pang, V. Vasudevan, and Q. V Le, “MnasNet:

Platform-Aware Neural Architecture Search for Mobile,” 2018.
30. C. Szegedy et al., “Going Deeper with Convolutions,” in Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition,
2015, pp. 1–9.

31. C. Szegedy, V. Vanchouke, S. Ioffe, J. Shlens, and Z. Wojna,
“Rethinking the Inception Architecture for Computer Vision,” in

Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 2818–2826.

32. M. Vanetti, “Confusion Matrix Online Calculator,” Confusion Matrix
Online Calculator, 2007. [Online]. Available:
http://www.marcovanetti.com/pages/cfmatrix/?noc=8%0A.
[Accessed: 27-Apr-2019].

AUTHORS PROFILE

Burhanudin Syamsuri received bachelor’s degree from
Duta Wacana Christian University, Yogyakarta,
Indonesia in 2002. He is currently pursuing a master’s

degree program in Bina Nusantara University, Indonesia.

Gede Putra Kusuma received PhD degree in Electrical
and Electronic Engineering from Nanyang Technological
University (NTU), Singapore, in 2013. He is currently
working as a Lecturer and Research Coordinator in
Computer Science Department, Bina Nusantara
University, Indonesia. Before joining Bina Nusantara

University, he was working as a Research Scientist in I2R – A*STAR,
Singapore. His research interests include pattern recognition, machine
learning, face recognition, appearance-based object recognition, mobile
learning, and gamification of learning.

https://www.openaccess.nl/en/open-publications

