

Machining Process Parameters on Green Composite Material

Ravi Raj.V, Vijaya Ramnath. B, Naveen. E, Ramanan. N,

Abstract: In this work, the Abrasive water jet machining process on a natural fiber composite material has been discussed. the material as in nature fibere material. The natural fiber material has in a low weight material. In the material used in a light weight application. In the material mostly used in a automobile structural application. In the material not used in load condition application. In the material used in a unload condition material. The material was prepared by hand layup technique. The material was discussed about the machining character station of the process. For this process, the following parameters standoff distance, abrasive flow rate, water pressure were determined. The output parameters considered are Material Remove rate and Surface roughness. in this condition the material removal rate will be increased and the surface roughness also increased. In the above condition was been solve the problem. The DOE was done by Mine tab software. Finally, the optimization result of the process has been conculded.

Keywords : Delimitation; Vision Inspection System; Image software.

I. INTRODUCTION

In this paper discuss with Machining parameter of the Abrasive water jet machining process. Finally they have concluded the GRA process¹. The paper discussed with L27 Machining process parmeter studied. The have Discussed the hole taper and surface roughness parameter. Finally they have concluded with the DOE software forDiscussed process optimization² in this work discussed with the optimization and process parameter of the super alloys material. The haveDiscussed with GRA for process optimization. Finally they have concluded with the paper ³ This work discussed with the abrasive water jet machining taken as a three parameters.

Revised Manuscript Received on November 30, 2019. * Correspondence Author

RaviRaj.V, Associate prof, Sri Sairam Engineering College, Chennai.raviraj.mech@sairam.edu.in

Vijaya Ramnath.B,2 prof, Sri Sairam Engineering College, Chennai. Naveen.E,3 Asst prof, Sri Sairam Engineering College, Chennai. Ramanan.N,4 Sr Enginner Synce Engineering Service, Chennai

© The Authors. Published by Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP). This is an open access article under the CC-BY-NC-ND license http://creativecommons.org/licenses/by-nc-nd/4.0/

The experimental done by Abrasive water jet Machining process finally they have concluded by GA Algorithm Process ⁴in this process discussed with the Abrasive Water jet Machining for Glass fiber Reinforcement material. The material taper angle were discussed. Finally the surface roughness are measured⁵. In this paper discussed with the filler material added in the natural fiber material. And the material cut done by water jet machining. TheDiscussed of MRR and suface roughness for added in the filler material.⁶ in

this work discussed about the inconel material.

The material used in a high temperature application. The material process done by AWJM process. Finally the have concluded the process ⁷In this paper discussed with banana and jute fiber natural fiber composite material machining process the haveDiscussed in a three values are in input parameter. And the output value discussed with MRR and Surface roughness.⁸In this paper discussed with natural fiber materialDiscussed on the awjm process. The machining process done by the hole taper angle and surface roughness The work done by aluminum composite materialDiscussed on the abrasive water jet machining process. the three level of the input parameter and the discussed with the MRR and surface roughness of the material 10

II. DOE PROCESS METHDOLOGY

The doe process methodology as shown in tables in the process block diagram as in a DOE Table. The tables consider as a no of variables the table shown in below

a) EXPERIMENTAL TABLESETUP

Table 1. Experimental Setup						
S.N	CONTENT	SETUP-1	SETUP-2	SETUP-3		
0.						
1	DIELECTRIC FLUID	EDM OIL	EDM OIL	EDM OIL		
2	POWDER	NIL	SILICON	GRAPHENE		
			CARBIDE			
3	WORK PIECE	AL-SIC	AL-SIC	AL-SIC		
4	WORK PIECE DIMENSIONS(MM)	117X55X2 0	117X55X20	117X55X20		
5	TOOL	COPPER	COPPER	COPPER		
6	TOOL DIAMETER	6MM	6MM	6MM		

Retrieval Number: A4150119119/2019©BEIESP DOI: 10.35940/ijitee.A4150.119119 Journal Website: <u>www.ijitee.org</u>

3584

Published By: Blue Eyes Intelligence Engineering & Sciences Publication

The table shown in a experimental set up in the block diagram. The set up shown that the variance of the process b) Process Flow chart

The process flow chart shown in the folw chart. The chart with explained the process of the doe. The process chart with discuss about how the process will going on. Finally flow process has been concluded.

C. BLOCK DIAGRAM

The EDM shown in figure 1. Since the experiments require the work piece to be completely submerged in the dielectric fluid, a customized tank of mild steel having dimensions 180x180x100 mm was made. The image of the EDM machine is shown as below:

Fig 1.BLOCK DIAGRAM

III. DESIGN OF EXPERIMENTS

In the design of experiments for the following equation are use. The doeDiscussed of the MRR and Surface roughness $\frac{s}{N} = -10\log\frac{1}{n}(\sum y^2)$

Smaller the better

(1)

$$\frac{s}{N} = -\log\frac{1}{n}\left(\sum\frac{1}{y^2}\right) \tag{2}$$

Table 1. Parameters used for Abrasive Water Jet

Machining					
Input Parameter	Level 1	Level 2	Level 3		
Cutting Speed (mm/min)	1400	1600	1800		

Retrieval Number: A4150119119/2019©BEIESP DOI: 10.35940/ijitee.A4150.119119 Journal Website: www.ijitee.org

Abrasive Flow rate	500	600	700
(g/min)			
Stand-off-Distance (mm)	4	6	8

Table 2. Experimental Details performed according to

Taguchi L₉ Orthogonal Array

Expt.No	Cutting Speed (mm/min)	Abrasive Flow rate(g/min)	Stand Off Distance (mm)
1	1400	500	4
2	1400	600	6
3	1400	700	8
4	1600	500	6
5	1600	600	8
6	1600	700	4
7	1800	500	8
8	1800	600	4
9	1800	700	6

IV. DISCUSSED TECHNIQUE

The images of the drilled portions were captured using high resolution capture technique in the Vision inspection system. The images were processed using RAPID-I to convert them into a viewable form with each hole focused to the required contour so that delimitation is visible to make the Discussed easy. The image processing is done using IMAGE J software in which the delaminated portion is traced using the tools available in the software. The entire delaminated area is calculated in terms of pixels using the software which enables the calculation of delaminating in the machined portion. Delimitation factor is calculated based on the area traced by the Image processing tool. Drilled hole area and the delaminated zone area is measured using the tools in the software. Delimitation factor (F_d) is defined as the ratio of delaminated area (A_{max})to that of the drilled hole area (A). The equation used for calculating delimitation factor is:

Fig.2. Processed images showing delamination

 $(\mathbf{2})$

$$F_d = \frac{A_{max}}{A} \tag{3}$$

Published By: Blue Eyes Intelligence Engineering & Sciences Publication

V. RESULTS Analysis

 Table 3. Results for Material Removal Rate and

 Delamination Factor

Detainination Factor							
Expt.N o		S/N Ratio		S/N Ratio for			
	MRR (g/s)	for MRR	Delaminatio n Factor	Delamination Factor			
1	0.6072	-4.3334	1.2847	-2.1760			
2	0.5643	-4.9698	1.2904	-2.2145			
3	0.5875	-4.6198	1.3273	-2.4594			
4	0.6384	-3.8981	1.4818	-3.4158			
5	0.6296	-4.0187	1.5137	-3.6008			
6	0.7989	-1.9502	1.3729	-2.7528			
7	0.8105	-1.8249	1.719	-4.7055			
8	0.9642	-0.3167	1.5369	-3.7329			
9	0.858	-1.3303	1.6664	-4.4356			

	Cutting		Stand Off
	Speed	Abrasive Flow	Distance
Level	(mm/min)	rate(g/min)	(mm)
1	-4.641	-3.352	-2.200
2	-3.289	-3.102	-3.399
3	-1.157	-2.633	-3.488
Delta	3.484	0.719	1.288
Rank	1	3	2

Fig. 3. Mean Effect Flat of the SN Ratio

Regression Discussed: MRR versus Cutting Speed, Abrasive Flow Rate, Stand Off Distance The regression equation is

MRR = -0.464 + [0.000728 Cutting Speed]

+ [0.000314 A	brasive	Flow	rate] -	[0.028	6 Stan	d Off
Distance]						
Predictor	Coe	ef S	E Coef	Т	Р	
Constant	-0.46	43	0.1882	-2.47	0.057	
Cutting Speed (mm	/min)	0.00	072808	0.000	08985	8.10
0.000						
Abrasive Flow rate	(g/min)	0.0	003138	0.000)1797	1.75
0.141						
Stand Off Distance	(mm)	-0.	028558	0.00)8985	-3.18
0.025						
S = 0.0440156 R-S	Sq = 94.0	0% l	R-Sq(adj	j) = 90.	.5%	
Discussed of Varia	nce					
Source DF	SS	MS	F	Р		
Regression 3 0.	.152709	0.05	0903 26	5.27 0.	002	
Residual Error 5 (0.009687	0.00)1937			
Total 8 0.16	2396					
Source	DF Se	eq SS				
Cutting Speed (mm	/min)	1 0.	127225			
Abrasive Flow rate	(g/min)	1 0.0	05909			
Stand Off Distance	(mm)	1 0.0)19574			

Cut	ting	Stand	Off		
	Speed Abra	asive Flov	v Distance		
Level	(mm/min)	rate(g/n	in) (mm)		
1	-2.283	-3.432	-2.887		
2	-3.256	-3.183	-3.355		
3	-4.291	-3.216	-3.589		
Delta	2.008	0.250	0.701		
Rank	1	3	2		
The re	gression eq	uation is			
Delam	ination Fac	tor = 0.04	2 + 0.000850	Cutting Speed	
(mm/n	nin)				
	- 0.0	000198 A	orasive Flow	rate(g/min)	
	+ 0.	0305 Stai	d Off Distan	ce (mm)	
Predic	tor	Co	ef SE Coef	Т Р	
Constant 0.0422 0.1398 0.30 0.775					
Cutting Speed (mm/min) 0.00084992 0.00006673 12.74					
0.000					
Abrasive Flow rate(g/min) -0.0001982 0.0001335 -1.48					
0.198					
Stand	Off Distanc	e (mm)	0.030458 0.	.006673 4.56 0.006	
S = 0.0	0326922 R	3 - Sq = 97	4% R-Sq(ad	lj) = 95.8%	
Discus	ssed of Vari	ance			
Source	e DF	SS	MS F	Р	
Regres	ssion 3	0.197987	0.065996 6	1.75 0.000	
Residu	al Error 5	0.00534	4 0.001069		
Total	8 0.2	203331			

Source	DF	Seq	SS
Cutting Speed (mm	/min)	1	0.173366
Abrasive Flow rate	(g/mi	n) 1	0.002356
Stand Off Distance	(mm)) 1	0.022265

VI. CONCLUSIONS:

The Experiment was conducted on Natural Fiber Composite Material using abrasive water jet machining. The process parameter of cutting flow, stand off distance and abrasive speed were consider for ABWJ Machining process. The output response like MRR and Surface Roughness were measured. The Results were shown in the MRR increase and delaminating factor were decreased. The MRR increased due to Cutting Speed and Abrasive Flow rater Increased. Delimitation Factor Decreased due to Stand of distance increased. In generally machining character station Expected in above Results.

Retrieval Number: A4150119119/2019©BEIESP DOI: 10.35940/ijitee.A4150.119119 Journal Website: <u>www.ijitee.org</u>

REFERENCES

- M. Naresh Babu & N. Muthukrishnan (2015): Checking of multiple process parameters in abrasive water jet machining of tiles, Journal of the Chinese Institute of Engineers, DOI: 10.1080/02533839.2015.1010944
- M. Naresh Babu & N. Muthukrishnan (2014): Checking on Surface Roughness in Abrasive Water Jet Machining by the Response Surface Method, Materials and Manufacturing Processes, DOI: 10.1080/10426914.2014.952020
- Arvind Kumar, Hari Singh & Vinod Kumar (2017):Discussed the parametric effect of abrasive water jet machining on surface roughness of Inconel 718 using RSM-BBD techniques, Materials and Manufacturing Processes, DOI: 10.1080/10426914.2017.1401727
- P. Sitarama Chakravarthy & N. Ramesh Babu (1999) A New for Selection of Optimal Process Parameters in Abrasive Water Jet Cutting, Materials and Manufacturing Processes, 14:4, 581-600, DOI: 10.1080/10426919908914851
- Hussein Mohammed Ali Ibraheem, Asif Iqbal & Majid Hashemipour (2015) Numerical optimization of hole making in GFRP composite using abrasive water jet machining process, Journal of the Chinese Institute of Engineers, 38:1, 66-76, DOI: 10.1080/02533839.2014.953240
- S. P. Jani, A. Senthil Kumar, M. Adam Khan & M. Uthaya Kumar (2015): Machinablity of Hybrid Natural Fibre Composite with and Without Filler as Reinforcement, Materials and Manufacturing Processes, DOI: 10.1080/10426914.2015.1117633
- Anish Nair & S. Kumanan (2016): Multi performance optimization of abrasive water jet machining of Inconel 617 using WPCA, Materials and Manufacturing Processes, DOI: 10.1080/10426914.2016.1244844
- V. Arumuga Prabu, S. Thirumalai Kumaran & M. Uthayakumar (2016): Performance Evaluation of Abrasive Water Jet Machining on Banana Fiber Reinforced Polyester Composite, Journal of Natural Fibers, DOI: 10.1080/15440478.2016.1212768
- R. Selvam, L. Karunamoorthy & N. Arunkumar (2016): Checking on Performance of Abrasive Water Jet in Machining Hybrid Composites, Materials and Manufacturing Processes, DOI: 10.1080/10426914.2016.1198039
- Puneet Trivedi, Ajit Dhanawade & Shailendra Kumar (2016): An experimental checking on cutting performance of abrasive water jet machining of austenite steel (AISI 316L), Advances in Materials and Processing Technologies, DOI: 10.1080/2374068X.2015.1128176

Retrieval Number: A4150119119/2019©BEIESP DOI: 10.35940/ijitee.A4150.119119 Journal Website: <u>www.ijitee.org</u>

3587