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 

Abstract: Local area within a normal natural image can be 

thought as a stationary process. This can be modelled well using 

autoregressive models. In this paper, a set of autoregressive 

models will be learned from a collection of high quality image 

patches. Out of these models, one will be selected adaptively and 

will be used to regularize the input image patches. In addition to 

the autoregressive models, a non-local self-similarity condition 

was proposed. The autoregressive models will exploit local 

correlation of individual image, but a natural will have many 

repetitive structures. These structures, which are basically 

redundant, are very much useful in image deblurring. The 

performance of these schemes is verified by applying to image 

deblurring. 

 
Index Terms: Autoregressive models, deblurring, non-local 

self-similarity, sparse domain selection.  

I. INTRODUCTION 

  The natural images, generally, can be coded using structural 

primitives like edges and line fragments [1]. These fragments 

are similar to simple cell receptive fields [2]. Olshausen et al. 

proposed to use small number of basis functions which are 

chosen from an over-complete code set to represent natural 

image [3]. Recently, such kind of sparse coding schemes are 

extensively being studied to solve inverse problems. This is in 

proportion to the progress of l0-norm and l1-norm 

minimization schemes [4]. 

  Let 
nx is the signal to be encoded, and 

 1 2, ,..., n m

m       is the assumed dictionary. 

The sparse coding of x over   is to find a vector 

 1 2; ;.....; m     such that x [5]. It is note 

that many coefficients in α are very close to zero. When the 

sparsity is measured as an l0-norm of α, which actually counts 

the non-zero quantities in α, the problem of sparsity coding 

becomes . Here T is a number governing the 

amount of sparsity [6]. On the other hand, the vector α can be 

found as  
0

2

2
minargˆ    x where λ is 

an arbitrary constant. The l0-norm is non-convex, hence it is 

many times replaced with l1-norm or weighted l1-norm, so that 

the problem becomes convex [7, 8, 9, 4]. The most important 

part of sparse representation is the selection of dictionary  .     

 
Revised Manuscript Received on July 05, 2019 

 Y Ravi Sankaraiah, Research Scholar, Dept. of ECE, JNTUK, 

Kakinada, India. 

S. Varadarajan, Professor, Dept. of ECE, Sri Venkateswara University, 

Tirupati, India. 

  Many efforts are made in choosing the training image dataset 

and learning a dictionary [10-20, 6]. Let the training image 

patches are grouped to form the set S, 

. The objective of dictionary 

learning is to optimize the dictionary  and the 

representation coefficient matrix  N ,...,1  so that 

ii s . This can be formulated using the following: 

  2

,minargˆ,ˆ
F

  S  

  Still the above minimization issue is non-convex. Different 

approaches were proposed to optimize the dictionary and 

coefficient matrix [11-13, 18-21]. Adaptive sparse domain 

selection (ASDS) scheme was presented in [22]. The scheme 

learns a series of compact sub-dictionaries and assigns 

adaptively each local patch a sub-dictionary as the sparse 

domain.  

  By learning a set of compact sub-dictionaries from high 

quality example image patches, the ASDS will perform the 

restoration. The example image patches are clustered into 

many clusters. Since each cluster consists of many patches 

with similar patterns, a compact sub-dictionary can be learned 

for each cluster. For an image patch to be coded, the best 

sub-dictionary that is most relevant to the given patch is 

selected. Since the given patch can be better represented by 

the adaptively selected sub-dictionary, the whole image can 

be more accurately reconstructed than using a universal 

dictionary, which will be validated by the experiments.   

  With ASDS, a weighted l1-norm sparse representation model 

will be proposed for restoration tasks. Suppose that {Φk}, 

k=1, 2… K, is a set of K orthonormal sub-dictionaries. Let x 

be an image vector, and xi=Rix, i = 1, 2… N, be the i
th

 patch 

(size: root (n) × root (n)) vector of x, where Ri is a matrix 

extracting patch xi from x. With ASDS, the image restoration 

problem can be modelled as: 

 
1

2

2

minarg
ˆ 


  oDHy  

The design of Φk can be intuitively formulated by the 

following objective function: 

   
1

2

,

minarg
ˆ,ˆ

kFkkk

kk

kk S 


    

where Λk is the representation coefficient matrix of Sk over 

Φk.  
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II. AUTOREGRESSIVE MODELS 

As described in previous section, the training data set was 

divided into K sub-datasets SK. One autoregressive model can 

be trained for each SK by utilizing all the patches in it. Assume 

that the support of the autoregressive model is a square 

window, and the projected autoregressive model will estimate 

the middle pixel in the square with the knowledge of its 

neighbor pixels which are the boundary pixels of the square 

window. Determination of size window is very difficult. A 

high order of the window will result in data over-fitting. In 

this paper, a window size of 3x3 is used. So, the total number 

of pixels becomes 9, and the number of neighbors of middle 

pixel is 8, which is the order of the autoregressive model. The 

vector of autoregressive model arK of one of the sub-dataset 

SK can be obtained using the solution of the least square 

problem given below.  

 



KS

qaa
is

i

T

ia s
2

K minargr

 
 ‘si’ is the middle pixel of the image patch Si and qi is the 

vector with all its neighbors. When this training process is 

applied to all the sub-dataset, a set of autoregressive models 

{ar1, ar2,..., arK}. This set of autoregressive models will be 

used for regularization. In the previous section, selection of 

sub-dictionaries was presented. Similar to that, the selection 

of autoregressive models will be done. Using the estimate x̂ , 

the high pass filtered version ˆ h

ix  can be calculated. Now, 

assume
2

ˆarg min h

i k c i c kk x    , and the 

autoregressive model arki to be assigned to the image patch xi. 

The vector holding the holding the neighbors of xi is denoted 

by i . Now, the prediction error of xi using arki and i  

should be minimum. In other words the term 
2

2i

T

i K ix ar XY  need to be optimized to be smallest. 

Incorporating this condition on the sparse representation, the 

objective function will look like the following.  

2

, ,2
1 1

ˆ arg min | |
i

i

N N
T

i j i j i k i

i j x

y DH x      
  

  
      

  
 

X

ar
 

Here,   balances the effect of autoregressive regulating 

term. 

III. NON-LOCAL SIMILARITY 

Adaptive regularization based on autoregressive model 

feats the local features in each and every image patch. In 

addition to the local features, many repetitive patterns are 

present on any natural image. These non-local redundancy is 

very much helpful in further improvement of quality of 

reconstructed images. For each local patch xi, similar patches 

in the image need to be identified. A patch 
l

iX  is said to be 

similar patch if
2

2

ˆ ˆl l

i i ie X X t   . Here t is a threshold. 

Assume xi and 
l

ix to be middle pixels of the patches 
iX  and 

l

iX  respectively.  

Now use the weighted average of
l

ix , 

1

L
l l

i i

l

b x


  can be used 

to estimate xi. Here the weight given to 
l

ix is fixed using the 

relation  
1

exp /l l

i i

i

b e h
c

  . Here h is governing factor of 

weight and ci is the normalizing factor given 

by  
1

exp /
L

l

i i

l

c e h


  . The estimate error 

2

1 2

L
l l

i i i

i

x b x


  can be rewritten as
2

2

T l

i i ix b  , where bi 

is the column vector containing all the weights  
l

ib  and i  is 

the column vector that holds all
l

ix . After incorporating the 

non-local similarity regularization into sparse representation, 

we get the following.  

22

, ,2 2
1 1

ˆ arg min
N N

T

i j i j i i i

i j

y DH o x b     
 

 
      

 
 

.  

IV. RESULTS AND DISCUSSIONS 

In this work, to learn dictionaries and thereby 

sub-dictionaries, two sets of high quality test images were 

considered. From each set on dictionary and corresponding 

sub dictionaries are formed. The selection of test images for 

learning the dictionary is so critical. The test images should 

have all the possible patterns to represent the features that are 

there in input images. The effect of the selection of these high 

quality images is presented in this section. Two kinds of blurs 

are considered, uniform and Gaussian blurs. Uniform blur is 

created by convolving the original image with a kernel of 

specific order. In the experiments two sizes are considered, 

3x3 and 9x9. When the dimension of the kernel is more, the 

effect of the blur will also be more. So, the effect of kernel of 

9x9 will be more than that with a kernel of 3x3. Gaussian blur 

is also applied in two varieties, one with standard deviation of 

1 and another with 3. The effect of Gaussian blur with the 

standard deviation of 3 is predominant than the other. The 

procedure is an iterative process, and it is iterated for 1000 

times. For each 40 iterations, the peak signal to noise ratios is 

noted. Fig.1. 

Table 1 gives the PSNR values obtained iteration wise and 

structural similarity (SSIM) between the input images and 

deblurred image obtained after 1000 iterations in uniform blur 

case with kernel size of 3x3. Tables 2, 3 and 4 presents the 

PSNR and SSIM values in uniform blur case with kernel size 

of 9x9. Gaussian blur case with standard deviation of 3 

respectively. 
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Input Image 

 
Uniform blur with kernel of 3x3 size 

PSNR = 30.713 dB 

 
Uniform blur with kernel of 9x9 size 

PSNR = 23.871 dB 

 
Gaussian blur with standard deviation of 1 

PSNR = 30.155 dB 

 
Gaussian blur with standard deviation of 3 

PSNR = 24.072 dB 

 

Fig.1. Input image and blurred images 
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Table 1. Simulation results on Uniform blur with 3x3 kernel  

  Dictionary – 1 Dictionary – 2 

It ASDS 
ASDS 

Autoregressive 

ASDS 

Autoregressive 

with non-local 

similarity 

ASDS 
ASDS 

Autoregressive 

ASDS 

Autoregressive 

with non-local 

similarity 

0 30.714 30.714 30.714 30.714 30.714 30.714 

80 35.375 35.759 36.587 35.381 35.758 36.591 

160 35.117 35.690 36.663 35.132 35.697 36.672 

240 35.043 35.685 36.679 35.061 35.692 36.681 

320 34.999 35.748 36.631 35.021 35.743 36.621 

400 34.979 35.801 36.596 34.999 35.790 36.584 

480 34.966 35.808 36.595 34.984 35.794 36.584 

560 34.956 35.808 36.594 34.970 35.794 36.585 

640 34.950 35.797 36.571 34.962 35.789 36.567 

720 34.945 35.791 36.563 34.957 35.785 36.561 

800 37.089 38.053 38.606 37.096 38.024 38.603 

880 37.232 38.106 38.625 37.231 38.076 38.626 

960 38.036 38.568 38.787 38.037 38.540 38.778 

1000 38.030 38.570 38.790 38.040 38.540 38.780 

SSIM 0.965 0.967 0.968 0.965 0.967 0.968 

 

Table 2. Simulation results on Uniform blur with kernel of 9x9 

 

Dictionary - 1 Dictionary – 2 

It ASDS 
ASDS 

Autoregressive 

ASDS 

Autoregressive 

with non-local 

similarity 

ASDS 
ASDS 

Autoregressive 

ASDS 

Autoregressive 

with non-local 

similarity 

0 23.871 23.871 23.871 23.871 23.871 23.871 

80 28.625 28.611 28.620 28.619 28.604 28.614 

160 29.316 29.282 29.157 29.310 29.272 29.151 

240 29.839 29.767 29.444 29.835 29.757 29.438 

320 30.152 30.068 29.822 30.144 30.056 29.816 

400 30.361 30.304 30.330 30.353 30.293 30.317 

480 30.505 30.459 30.563 30.501 30.454 30.554 

560 30.607 30.562 30.685 30.605 30.565 30.688 

640 30.684 30.639 30.846 30.679 30.644 30.857 

720 30.739 30.695 30.985 30.733 30.701 30.994 

800 31.124 31.019 31.160 31.111 31.019 31.166 

880 31.260 31.144 31.241 31.236 31.137 31.247 

960 31.242 31.126 31.187 31.204 31.103 31.189 

1000 31.270 31.150 31.200 31.230 31.130 31.200 

SSIM 0.900 0.899 0.898 0.900 0.899 0.898 
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Table 3. Simulation results on Gaussian blur with standard deviation of 1 

 

Dictionary – 1 Dictionary – 2 

It ASDS 
ASDS 

Autoregressive 

ASDS 

Autoregressive 

with non-local 

similarity 

ASDS 
ASDS 

Autoregressive 

ASDS 

Autoregressive 

with non-local 

similarity 

0 30.155 30.155 30.155 30.155 30.155 30.155 

80 36.061 35.852 34.167 36.045 35.856 34.186 

160 36.049 35.820 32.908 36.030 35.827 32.936 

240 36.073 35.831 32.174 36.056 35.833 32.206 

320 36.033 35.660 31.680 36.020 35.664 31.712 

400 35.968 35.387 31.333 35.967 35.402 31.364 

480 35.950 35.320 31.079 35.955 35.339 31.111 

560 35.943 35.297 30.888 35.950 35.318 30.922 

640 35.935 35.177 30.743 35.943 35.202 30.778 

720 35.931 35.088 30.629 35.938 35.119 30.666 

800 37.519 36.353 30.511 37.474 36.391 30.562 

880 37.593 36.585 30.372 37.534 36.613 30.436 

960 37.886 37.368 30.260 37.827 37.347 30.342 

1000 37.890 37.390 30.200 37.830 37.370 30.290 

SSIM 0.965 0.953 0.721 0.965 0.953 0.726 

 

 

Table 4. Simulation results on Gaussian blur with standard deviation of 3 

 

Dictionary – 1 Dictionary – 2 

It ASDS 
ASDS 

Autoregressive 

ASDS 

Autoregressive 

with non-local 

similarity 

ASDS 
ASDS 

Autoregressive 

ASDS 

Autoregressive 

with non-local 

similarity 

0 24.072 24.072 24.072 24.072 24.072 24.072 

80 26.840 26.824 26.834 26.838 26.821 26.834 

160 27.149 27.087 27.122 27.145 27.084 27.123 

240 27.351 27.233 27.305 27.341 27.234 27.310 

320 27.478 27.369 27.432 27.465 27.370 27.435 

400 27.581 27.516 27.529 27.566 27.517 27.532 

480 27.652 27.610 27.607 27.639 27.604 27.610 

560 27.702 27.676 27.671 27.691 27.667 27.674 

640 27.742 27.742 27.723 27.733 27.733 27.725 

720 27.773 27.802 27.768 27.766 27.792 27.765 

800 27.795 27.873 27.880 27.781 27.853 27.871 

880 27.825 27.913 27.930 27.801 27.882 27.917 

960 27.835 27.940 27.966 27.800 27.898 27.949 

1000 27.840 27.950 27.980 27.810 27.910 27.960 

SSIM 0.863 0.868 0.868 0.862 0.867 0.867 

 

The effect of autoregressive model and extracting 

non-local similarity is apparent when the blurring is 

predominant. Hence, the effect can well be observed in 

Gaussian blur with standard deviation of 3 and uniform blur 

with kernel 9x9. This effect 

is shown in Fig. 2.  
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Fig. 2 PSNR values obtained with different techniques when blurring is more 

V.  CONCLUSIONS 

In this paper, sparse representation is proposed with few 

improvement terms and applied on image deblurring. 

Uniform and Gaussian blurs are simulated and deblurring was 

done using sparse representation based schemes. Adaptive 

selection of sub-dictionaries was presented. In addition to the 

proposal of the said sparse representation, to characterize 

local image structures, autoregressive models are proposed. 

These autoregressive models pre-learned from training 

dataset. Out of the all autoregressive models learned, one or 

few models will be adaptively chosen to regularize the 

solution space. Along with the autoregressive models, a 

non-local self-similarity condition was also proposed. A 

natural image will have several repetitive image structures. 

These conditions help in preserving the sharp edges. The 

simulation results proved the superiority of the two 

improvements proposed, specifically when the blurring 

quantity is more. 
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