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Abstract: In this paper, the estimate the noise of recurrent 

chaotic neural networks with varying time delays. The design of 

adaptive synchronization control by means of tracking controller 

is presented which enables the, exponentially mean square 

stability of the synchronization error of CRNN system. 

 

Keywords: Recurrent, Chaos, Networks, Delays, Feedback 
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I. INTRODUCTION 

The estimation of chaotic systems plays vital role in many 

areas such as secure communication, image processing, 

speech reorganization etc. 

Recently the chaotic recurrent neural network (CRNN) 

with delay system is analyzed by various control techniques 

such as sample feedback control, back stepping control, 

nonlinear feedback control etc. 

The objective of this paper is to analyze a chaotic neural 

network with varying time delays involving the noise 

perturbation. The next section is devoted to this statement of 

the problem, In section 4, the estimation of CRNN using 

self-turning control is described section 5,the contains the 

conclusion 

II. PRELIMINARIES AND PROBLEM 

DESCRIPTION 

We use the following notations for a CRNN. 

 
* [ ( ) ( ( ( ))) ] c c cdr Cr Wf rc W f r t t J dt       (1) 

where the state vector 1 2 3( , , , , ) ;T n th

c c c c cnr r r r r R Cn L  is 

thn  diagonal matrix consisting of positive real numbers  

, 1 , 2,...., ,ic i n  and ( )ijW w  is the weight matrix of 

order, 
* ( )ijW b  is the delayed weight matrix of order n ; 

1 2[ , , , ]T n

nJ J J J R L  is the input vector; ( )t the 

transmission delay; ( )f r  is activation function. It is 

reasonable to make the following assumptions for the 

present study 
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1H : f , the activation function has the property of 

roundedness with the fulfillment of the Lipschitz 

condition 1 2 1 2 1 2( )  ( )  |  |,  ,c c j c c c cf r f r k r r r r R      

2H  :  ( )( ) 0cc r    is differential function possessing the 

property with  
*( ) = max( ( ))c c cr   and  0 1,   .c c cr r      

In Accordance with the master-slave concept for chaotic 

system can be expressed by means of the equation. 
*

0

1

ˆ ˆ ˆ ˆ( ( ( ))) ( )

( , ( ), ( ( ))) ( )

c c c

n

ij c c c j

i

dr Cr Wfr W f r t t J u t dt

t x t x t t d t



  


        

   
     (2) 

where 1 2 3
ˆ ˆ ˆ ˆ ˆ( , , , , )T n

c c c c cnr r r r r R L  and  0u t is driving 

signal. This tool having been involved, the expression for 

the initial condition of the controlled network obtained to be 

ĉi ir                               (3) 

The synchronization error is furnished by the expression 

ˆ
c c cx r r   

Consequently, the error in the synchronization dynamics 

between the response system and drive systems provided by 

(1) and (2) is governed by 

ˆ
c c cdx dr r   

*

0

1

( ) ( ( ( ))) ( )

( , , ( ( ))) ( )

c c c c c c c

n

ij c c c j

i

dx Cx W g x W g x t t u t dt

t x x t t d t



  


       

   
  (4) 

Lemma 3.1 : Suppose 1 2 3, ,    are constant matrices such 

that 1 1

T   and 2 20 .T    Then 
2

1 3 2 3 0T      

if and only if 

0
0 2

31 










 T

     (5) 

Lemma 3.2 : If Σ1, Σ2 and Σ3 are real matrices of appropriate 

dimensions with Σ3 > 0 

c
TT

cc
TT

cc
TT rrrrrr ˆˆˆ2 2

1
3213121  

 

then for any vectors cr  and  cr̂  with suitable dimensions. 

Lemma 3.3: Consider a continuous nonlinear system 

  ttr=gr cc ,  where (t)rc is an n × n vector; 

Let us associate the Lyapunov function ( , )V x t embedded 

with the properties 

Estimation of Recurrent Chaotic Neural 

Networks Varying Delays through Self-tuning 

Feedback Control Mechanism 

Sathish Kumar Kumaravel, Suresh Rasappan 



 

Estimation of Recurrent Chaotic Neural Networks Varying Delays through Self-tuning Feedback Control Mechanism 

1244 

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  Retrieval Number G6362058719/19©BEIESP 

           
2 2

1 2( , ) , , n

c c c cr V r t r r t R R            (6) 

and 

        3 4( , ) ( , ) , ,t n

c c cV r t V r t e r t R R       &       (7) 

where 1 2 3 4, , ,  and       are positive scalar constants. The 

state ( )cr t is observed to be exponentially stable. The state 

( )cx t  will be exponentially stable with the fulfillment of the 

properties 
1

2 2

3 31 4

32

2 1

( ) (0)  if t t

c cr t r x tx  
 

 

 
   
     
     

   (8) 

and 

 
 

1
2 2

3 31 4

32

2 1 3

( ) (0)  if t t t

c c cr t r x x x   
 

   

  
   
             

 

(9) 

III. THE ESTIMATION OF CRNN USING SELF-

TUNING CONTROL 

Controller of the system is expected to posses smart 

tracking capacity so as to permit the occurrence of tracking 

capacity convergence. Consequently the condition t → ∞ 

has to be fulfilled compared to other controller, its find that 

self turning adaptive control has a special place in the set of 

controllers with, the adjusting parameters not known for the 

system, the adaptive controller is working to find the 

parameter value[11]. Here the self tuning controller should 

defined by 0 ( )u t  
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  (10) 

  

Lemma 4.1: Under the conditions of (H1) and (H2), if the 

controller law provided by (10) is followed by the system 

(7), then the globally synchronization of the controlled slave 

system (2) will the master system (1), 

1 min ( ),cR  2 max ( ),cR 
3

max

,
( )cR







  4 .   If  

3 1,   then there exist matrices ,,, 21 SSRc  a diagonal 

matrix Kc > 0 and positive scalars γ > 0, τ > 0 and ρ > 0 

satisfying the LMI 
*

2 1

1

1

2

1

1

* 0 0 0

* 0 0

* 0 0

T T T Tc

c c c c c c c c c c cR C C R K S K K S K M M R R A R B

S

S






 

 
     

 
  
 


 
  

 

(11) 

Proof: We deal with Lyapunov functional 

     
 

2

1
( ) ( ) ( )  

1
c

t

T T

c c c c c

t t

V t x t R x t g x s S g x s ds





 
   

Using Ito formula, one gets its derivative of V (t) as follows  

( ) ( ) 2 ( ) ( ( )), ( ( )) ( )T

c c c cdV t LV t dt x t R x t x t t dw t     

where 

     

( ) ( ( ), ) ( ( ), ) ( )

1
 trace ( ) , ( ) , ( )

2

t c xc c

T

c c xc c c c

LV t L x t t V x t t f t

x t x t t V x x t t   

 

    

 
     

 

2

2

( ) ( )
( ) ( ) ,

1

( ), 2 ( )

T

c c T

c c c c

T

xc c c c

g x s S g x
Vt g x t t S g x t t

V x t t x t R

 


   




and 

 ( ), 2xc c cV x t t R  

then the equation (15) becomes 

   

2

2

*

0

1
( ) ( ( )) ( ( ))

1

( ( ( ))) ( ( ( )))

2 ( ) ( ) ( ( )) ( ( ( ))) ( )

trace ( , ( ), ( ( ( ))) ( , ( ), ( ( ( )))

T

c c

T

c c c c

T

c c c c c c c c

T

c c c c c c c

LV t g x t S g x t

g x t t S g x t t

x t R c x W g x W g x t t u t

t x t x t t R t x t x t t



 



   




  

     

    

 

 

  

*

0

2

2

( ) 2 ( ) ( ( )) ( ( ( )))

( ( ( ))) ( )

1
( ( )) ( ( ))

1

( ) ( ( ( )))

trace ( , ( ), ( ( ( ))) ( , ( ), ( ( ( )))

T

c c c c c

c c c

T

c c

T

c c c c

T

c c c c c c c

LV t x t R c x t W g x t

W g x t t u t

g x t S g x t

g x t t S g x t t

t x t x t t R t x t x t t





 

   

  

  




  

    

 

(12) 

In view of the assumption 

         

trace ( , ( ), ( ( ( ))) ( , ( ), ( ( ( )))T

c c c c c c c

T T T T

c c c c c c c c c c

t x t x t t R t x t x t t

x t M M x t x t t M M x t t

   

  

   

    
 

 

equation (12) becomes, 

*

0

2

2

( ) ( ) 2 ( ( ( )))

2 (( ( ))) 2 ( ) ( )

1
( ( )) ( ( ))

1

( ( ( ))) ( ( ( )))

( ) ( ) ( ( )) ( ( ))

T T T

c c c c c c c

T T

c c c c c c

T

c c

T

c c c c

T T T T

c c c c c c c c c c

LV t e R C C R x t x R W g x t

x R W g t t x t R u t

g x t S g x t

g x t t S g x t t

x t M M x t x t t M M x t t





 

  

     

  




  

     

 

using Lemma (2.3) and taking Σ3 as the identity matrix 
1

1

1

2 ( ( ( ))) ( )

                               ( ( )) ( ( ))

T T T

c c c c c c c c c

T

c c

x R W g x t x R W S A R x t

g x t S g x t




 

we get 

 *

* 1

2 2

2 ( ( ( )))

( ) ( ( )) ( ( ))

T

c c c c c

T T T

c c c c c c c c c

x R W g x t t

x R W S B R x t g x t S g x t



 



   
 

Consequently 
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1

1

* 1

2

2 2

( )

                   ( )

1
( ( )) ( ( )) ( ( )) ( ( ))

1

( ( )) ( ( )) 2 ( ) ( )

T T T

c c c c c c c

T T

c c c c c

T T

c c c c

T T T

c c c c c c c

LV t x R C C R R W S W R

PW S B R M M x t

g x t S g x t g x t c S g x t

x t t M M x t t x t R u t






 





   

  

  


   

 

(13) 

Substituting into the equation (13), 

1 1

2 2

( ( )) ( ( )) ( ) ( ( ))

( ( )) ( ( )) ( ) ( ( ))

T T

c c c c c c

T T

c c c c c c

gT x t S g x t x t K S K g x t

gT x t S g x t x t K S K g x t




 

where Kc is matrix with positive constant entry. The 

equation (13) gets transformed into 

 
1

1

* 1

2 1

2
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1
                  ] ( )

1

                  ( ( )) ( ( ))

                  2 ( ) ( )
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T T
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T T T
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1
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1 1
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1
                 

1

T T T

c c c c c c c

T T T
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T T
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T

c
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0

1

1

* 1 *

2 1

*

2 2

1

                 2 ( ) ( )

( ) [

                 

1
                 ] ( )

1 1

                 (

Tc

c c c

T

c c

T T T

c c c c c c

T T T

c c c c c c c

T T

c c c c

T

c

K S K

x t R u t

LV t x R C C Rc R W S W R

R W S W R M M K S K

K S Kc K S K x t

x t
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T Tc
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t M

K S Kc K S Kc
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now, use the nonlinear adaptive feed back control then, 
2
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2 1

1 1

2

1
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( ) ( ) ( )1
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then, 

     

1 * 1 *

1 2

1 2
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2 2
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1
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1 1
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T T T T
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where 
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(14) 

Expectation, we get considering (14), then 
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Applying the relation 0  
ab

a
a b

 


and lemma (2.3), we 

obtain 

min

min

( )
( )  ( )

( )

t

c

c

V t v t x
R







 &  

Invoking Lyapunov stability theorem, it follows that error 

dynamic system exponentially mean square stable. It is 

observed that the controlled slave system is globally 

synchronized with the master system. 

IV. CONCLUSION 

In this paper a new sufficient condition is proposed to 

design an exponential mean square stability of the 

estimation of CRNN with time varying delays. It has been 

shown how the self-tuning control method can be 

successfully applied to estimate CRNN. The stability of 

estimation criteria is expressed in terms of LMIs. 
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