
International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-8 Issue-7 May, 2019

773

Published By:

Blue Eyes Intelligence Engineering &

 Sciences Publication
Retrieval Number G5724058719/19©BEIESP

Clustering Based Test Suite Selection for Ranking

of Program Execution Sequence Using Improved

Precision in Regression Testing

B. Bhaskar kumar Rao, R. Vasanth kumar Mehta, B. Narendra kumar Rao

Abstract: In Software development, Testing plays an important

role. Testing becomes tedious with increase in no of test cases.

Test Suite size increases and it becomes difficulty with redundant

test cases and faulty test cases. Localization of fault is the process

of isolating faulty location of program during its execution.

Current approach uses the comparison of a successful run test

case with a failed run test case spectrum for identification of

faults. Along with above specified approach, criteria of program

cohesion and program history are also used in effective

localization of faulty components. The results suggest better

performance when compared with other scenarios.

Index Terms: Fault Localization, Regression testing, Test case

Selection, Inclusiveness, Precision.

I. INTRODUCTION

Programmer’s code and unit test software to cover

many issues in them, but eventually during testing of the

program so many issues arise, because of which a

programmer has to localize and the problem and correct it.

The current approach is useful in such a scenario where in

fault localization [11] can minimize the number of test cases

selected to detect similar faults and improve precision in

fault detection. The approach relies on identifying similar

test case traces and components which are fault prone,

which further minimizethe number of non- defect revealing

test cases and hence improve the precision during regression

testing process.

II. LITERATURE

Program spectrum is a terminology which is unique for

a successful and a failure run. This uniqueness can be

considered for differentiation or identification of fault

components. A programmer can contrast a failed run in

current version with a passed run in previous version of a

given test case. Vpoisotool have been proposed in literature

which can compare a successful run program binaries with a

failed run program in terms of phases and orders functions

for fault localization. Delta debugging technique, a greedy

approach which used a thread scheduling program for

verification. DYNADIFF tool isolates faults from intra

procedural calls and identify the paths that were not taken in

prior version. A fault localizer program relies on a

successful run and a failed run in literature as such. In

current work similar case is followed, but there are two

other criteria which are deemed to be important in fault

localization like program cohesion and change history

applied on program spectrum. Few authors in literature have

proposed tools and other related work [1, 2, 3, 4, 8].

III. MOTIVATION

Program spectrum is obtained by capturing the stack

trace of the given test case. These stack traces are then used

to generate call trees. These call trees are then traversed to

produce a call or program spectrum. The program spectrum

recorded per test case is then mapped on to a mesh model

for all requirement based test cases for a give version. The

test case spectrum is recorded for different versions and a

current version failed test case is compared with a previous

version success test case. This provides an insight into

variation of flow or program spectrum. The differentiation

phase takes into account such failed and successful test case

and localizes the part or segment of program spectra that is

affected.

During regression testing phase there is a need to

identify faults that affect other test cases, i.e., identify those

affected test cases due to fault components and use them for

effective fault detection or in other way, reduce the test case

number that are necessary to identify faults around a given

fault module. This approach is very much useful in cases

where there is a need to improve fault detection with

reduced number of test cases for testing. This work

demonstrates the above intention with a conceptual system

which is presented in section under Conceptual system and

its representation.

IV. PROBLEM STATEMENT

In the process of regression testing based on clustered set of

test cases, the safe regression testing is the most sought out

criteria. The major parameters to be achieved are

inclusiveness and precision. As suggested in [9], clustered

set of test cases based on frequent segments, the

inclusiveness is 100%, where both relevant and irrelevant

modification revealing test cases are chosen for test suite

reduction. But the parameters on Precision, which is

measured in terms of eliminating the non-modification

revealing test cases, are not quite effective, which means

reduction of test cases is not effective. Hence, a mechanism

which can reduce the number of test cases for locating

similar faults is very much required for those test cases,

which comprise of error prone modules. This can be

achieved based on comparing a successful run of a test case

in version (Vi-1) and version(Vi), having a failed run for the

same test case.

CONCEPTUAL SYSTEM AND REPRESENTATION

Clustering Based Test Suite Selection for Ranking of Program Execution Sequence Using Improved

Precision in Regression Testing

774

Published By:

Blue Eyes Intelligence Engineering &

 Sciences Publication
Retrieval Number G5724058719/19©BEIESP

Figure 1: Conceptual System

Profiler program

Profiler program job is to record the all calls executed

during its execution by a program. Specific tools like code

Tune helps in recording the program traces and an excel

format report will be produced. This format is further fed to

trace program that can generate program traces in encoded

identifiers form which suits for mapping test case-code

coverage matrix. The output produced is in the form of

strings of methods for each test case.

Application Program

 The source for testing is standard SIR repository for

testing purpose, and it can induces a bug per each revision.

Hence program traces are sufficient for verification of test

cases

Test Suite

Test suite contains complete amount of the test cases for

the required system specification. They have been designed

according to system requirements and the objective is to

attain method coverage consisting minimum number of test

cases.

Test Case Database

The aim of the test case database is to preserve the

following and fetch them when it is necessary.

Revision history: Contains list of methods added,

deleted, modified in each change required (can be selective)

either through change in requirement or fixation of bugs.

Source code will change history per file at functional level.

Test case traceability matrix per standard code revision is

stored.

Trace data of each program for which we need to run

each test case needs to be stored. Test cases selected for

every version, based on CVS (concurrent versioning

systems) revision.

Change history

Change history codeDiffs between files which were

revised in current version and the previous version and

populates the lists like addM, delM, modM which represents

the three types of changes that code is likely to undergo

during its development process. The change history is

capable of locating and classifying the methods based on the

type of change like added, modified and deleted portions of

the code. These are likely to be used further in the test

selection process.

Two major tools are comprised in this module of one

which codeDiffs two files of source code and generates

HTML format reports which is further more analyzed by

another program to produce or fill lists which are of the

forms like addM, storing the list of newly added code, delM

stores deleted methods and modM stores modified methods

list in a given file. These lists further are useful for selecting

test cases so that modified function traversing methods are

chosen for testing of the system.

Test Case-Code Coverage matrix

Test cases which are executed generates set of sequences

and by basing on the results achieved; the tester can

conclude whether it leads to a success or failure run. All

success runs are graphed to a matrix form where rows are

test cases executed per revision and columns are methods or

indices corresponding to methods used in chosen system

requirements. These methods will form the code coverage

with respect to requirements that test coverage is happened

with test cases obtained.

All related columns are mapped to value i if the given

method is encountered in ith position for a given test case

execution. For each successful mapping of function or

method, value of i increments 1 for the given test case. This

will continue till all methods for a given test case are

mapped as per requirements and all test cases are mapped in

the matrix with its respective methods or functions.

Call sequence generation:

A call sequence is set of ordered sequence calls of

methods or functions generated during execution of a test

case or a program under study. These set of methods are

recorded during execution of a program from call stack. Call

stacks are recorded using profiling tools available in both

open source and commercial formats.

Profiling tools generate call stacks in form of HTML

reports or .csv format reports which comprise of hierarchy

of calling sequences of the stack at various instances of time

for a given test case or program execution. Library call

sequences are generally excluded from inclusion into the

profiling reports generated by the profiling tools. The calling

stack is sampled at regular intervals of time based on the

time taken for the execution of simplest or smallest function

in terms of time and complexity to ensure that all functions

are observable in the profiling reports.

SymbolName is the attribute that represents the calling

function name in the reports. The current mechanism

involves generation of tree structure from the reports such

that call stack is recorded in form of tree where in nodes

represent the methods invoked during call stack invocation

and edges represent the relation between the successive

nodes in the call stack for the attribute SymbolName.

A call stack comprises of sequence of method calls

which includes name of functions or methods invoked

during execution of test case. The call stacks generated

repeatedly are mapped on to the same tree. All these

mappings of the call stack (in form of trees) are done on to

the graph. The two major attributes representing the data

structures are fan-in and

fan-out. Fan-in represents

the number of edges

generating or invoking the

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-8 Issue-7 May, 2019

775

Published By:

Blue Eyes Intelligence Engineering &

 Sciences Publication
Retrieval Number G5724058719/19©BEIESP

given node or method. Fan-out represents the number of

edges invoked by a given method. The latest sequences of

methods occupy the left most trees for a given node. At a

given instant for a node, the number of children for a given

method represent the number of methods invoked by it. The

infix traversal of the final tree generates the call sequence

for the corresponding test case.

Program Illustration is defined below in form of simple

program:

f

d

e

d

c

c

c

c

b

b

b

b

a

a

a

a

main

main

main

main

C1 = {main, a, b, c}

C2 = {main, a, b, c, d}

C3 = {main, a, b, c, e}

C4 = {main, a, b, c, d, f}

Cs = {main, a, b, c, d, f, e}

Here, C1, C2, C4are subset sequences and Cs is superset

sequence, such that all subset sequences (Cn) are units of the

maximum superset sequences (Cs).

Figure 2: Test Case and Code Coverage matrix

Test cases executed in a certain time generates set of

sequences and basing on the result the tester decides

whether it has generated a success or failure run. A program

run may generate different program traces for success run.

All success runs are mapped to a matrix where the test cases

executed per revision represent rows and methods or indices

corresponding to methods used in selected system

requirementsrepresents column. These methods will form

the code coverage requirements that test cases required to

ensure test coverage.

All related columns are mapped to value i if the given

method is encountered in i
th

 position for a given test case

execution. For each successful mapping of function or

method, value of i increments 1 for the given test case. This

will continuetill all methods for a given test case are mapped

and all test cases are mapped in the matrix with its

respective methods or functions.

Most Maximal Frequent Trace Clustering [9]

Test cases are repetitiousin many cases since they are

designed keeping requirements in view. By using

traceability matrix requirements are mapped to test cases,

which helps in identifying the test cases required for testing.

Most frequent program trace clustering algorithmwill

group most frequent traces of coverage items as a group

among the most frequent traces of test cases in the given

suite. The clustering process will be carried out until all the

code coverage items are made as cluster in the form of test

cases as described in the algorithm next.

The main intent of this algorithm is to cluster only those

test cases that are redundant from coverage item viewpoint.

The test cases are sequenced/aligned in the decreasing order

of frequency of code coverage items based clusters, which

comprises the test cases.

Residual Requirements based Test Suite Reduction [9]

Earlier in literature there are test suite reduction

algorithms which take up greedy approach and another one

takes up HGS approach which selects test cases for test

coverage requirements. Algorithm is largely focusing on

selecting residual code coverage requirements, in which the

algorithm will select test cases which have high maximum

code coverage. This involves generation of visited list of

code coverage requirements for a given test case(s) selected

from maximal clusters and then select test cases from next

most frequent items from the clusters which were definitely

not present or present minimally among the previously

selected test cases for code coverage. It maximizes the code

coverage ability and reduces the number of test cases

selected for the testing step.

Sequence Analyzer:

Sequence ana1yzer is sequence of steps which can

compare a success (passed test case-r√) one in version Vi-1

with next test case which provides a failed run (passed test

case-rx) in version Vi. The sequence analyzer which is a

sequence of steps compares the program call sequences of

these test cases and stores the variations in patterns`fs from

the actual passed one. The o/p is in form of program

methods which differs in their failed runs.

This sequence analyzer is composed of sequitur [7]

algorithm Sequence modeler, sequence diff generator and

assign weight module.

Figure 3: Sequence Analyzer

Sequence Modeler: The sub module inputs the

corresponding runs(r√, rx)and splits the sequence based on

k-sequencer, this determines the number of segments into

which the given call sequence is split.

Clustering Based Test Suite Selection for Ranking of Program Execution Sequence Using Improved

Precision in Regression Testing

776

Published By:

Blue Eyes Intelligence Engineering &

 Sciences Publication
Retrieval Number G5724058719/19©BEIESP

Figure 4: Sequence Modeler

Sequence Diff Generator: The corresponding module

performs hamming distance computing and it will compare

the sequence of both passed and failed case, such that it can

identify the unique and non unique traces to form two lists

called sim() and dissim().

Figure 5: Sequence Diff Generator

Assign Weights: It assigns ranks to faulty modules

basing on program cohesion, spectral difference, and change

history based selection to dissim set of modules.

Figure 6: Ranking Fault Sequences

Fault Localizer [5, 6]:

Fault localizer ranks the individual test case sequences

from groups of clustered test cases, those which are similar

to failed ranked sequences identified in sequence analyzer.

The i/p consists of all regression testing chosen cases and

o/p consists of ranked test cases in priority of identifying

fault so that most likely test cases which fail or mostly

failure test cases are in top (max ranking) and less probable

cases in bottom (low rank). The objective is to remove

duplicte modification revealing test cases from diffeent

passed runs or test cases. This is the intention of precision in

regression testing.

Figure 7: Fault Localizer

Method Cohesion:

Methods invoked during test case generation are

represented in matrix for as discussed in Test Case-Code

Coverage matrix. The three types of cohesion as specified in

[8] are discussed as follows:

 Common modules those execute under all test

cases as per requirements based test cases.

Eg:{m1, m20}

 Potentially involved modules are those which

need not be executed with all test cases.

Eg,{m3}

 Indispensably involved modules are those

which are particular only to a particular test

case but not linked to all other test cases.

Eg.{m7}

The methods correspond to entries T in Fig-8.

Figure 8: Test case vs Methods relationship

Ranking Fault Prone modules:

The test case which produced a failing result on

comparison with a success version of the same generates a

set of methods which are likely to contain the defect. The

faulty components are ranked based on change history and

method cohesion using a ranking algorithm as explained in

next section.

Test case Selection approaches:

Selection of Test case during regression testing consists

of selection of test cases that are very much likely to the

changes made and should reveal defects in modified code.

This is measured in terms of inclusiveness and precision.

This refers to earlier work by Rothermal. The present

research aims at identifying effective test case selection with

more precision based test cases. The approach planned is

Item Ranking based-Test case selection (IRTCS). For

improving Precision based test cases, this current approach

is being compared with two available approaches are known

as Selective-Test case selection (STCS) and All-Test case

selection (ATCS) which will be discussed during

experimentation(discussed in section-VII).

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-8 Issue-7 May, 2019

777

Published By:

Blue Eyes Intelligence Engineering &

 Sciences Publication
Retrieval Number G5724058719/19©BEIESP

V. PROCEDURES

MostMaximalFrequentTraceClustering:

Input:

Requirement based test cases in Test Case-Code coverage

matrix format.

Output:

Clustered test cases.

Procedure:

Perform Most Maximal frequent trace clustering on

requirement based test cases.

ResidueRequirementBasedReduction:

Input:

Clusters of test cases, code coverage requirements in terms

of functions.

Output:

Reduced test cases

Procedure:

Select test cases from clusters until all code coverage

requirements are satisfied

ChangeHistoryTestselection:

Input:

Requirement based test cases in Test Case-Code coverage

matrix format, change history list

Output:

Change history based test cases.

Procedure:

Based on change history category such as added, modified

and deleted select test cases from Test Case-Code coverage

matrix.

TestCaseSelection:

Input:

Test cases selected from MMFTC-RRBC approach.

Output:

Modification revealing test cases.

Procedure:

Test case selection will depend on the three approaches like:

a. All-Test case selection (ATCS)

b. Selective-Test case selection (STCS)

c. Item Ranking based-Test case selection (IRTCS).

Sequence Modeler:

Input:

Failing version Vi trace-Ti-r√

Passing version Vi-1 trace-Ti’- rX

Output:

Generate pSeq[],fSeq[] for given two sequences.

Procedure:

a. Inputs two sequences, rXfrom Vi and r√ from Vi-1.

b. Split them to corresponding different segments.

SequenceDiffGenerator:

Input:

Segments from Sequence Modeler

Output:

Sim{},DisSIM{}

// similar and dissimilar segments

Procedure:

Separates the input segments into two sets known as similar

and dissimilar segments.

FaultLocalizer:

Input:

Faulty components from disSim{}

Output:

Ranking of segment components

Procedure:

Perform ranking of segment components based on change

history and method cohesion.

AssignWeights:

Input:

disSim{}and selected test cases for regression test case

selection

Output:

Perform ranking of segment components

Procedure:

Ranking for fault components and prioritizing test cases

based on change history and method cohesion.

RankingAlgorithm:

Input:

disSim{}and selected test cases for regression test case

selection

Output:

Perform ranking of segment components

Procedure:

Identification of methods which are causes of Failures from

program spectral difference and assign the following

priorities(priority values specified for each case in

parenthesis):

Priority 1: If a method is from codeDiff changes and

also cohesive thenassign priority as follows (TOP):

1.1: If modules are common and part of codeDiff list

then assign highest priority (7).

1.2: If modules are potentially involved and part of

codeDiff then assign moderate priority (6).

1.3:If modules are indispensably involved and part of

codeDiff then assign low priority (5).

Priority 2:Program spectrum difference modules and

CodeDiff generated modules (4).

Priority 3: Methods with cohesion relationship are

assigned the following:

3.1: If modules are common then assign highest

priority (3).

3.2:If modules are potentially involved then moderate

priority(2).

3.3: If modules are indispensably involved then low

priority (1).

VI. EXPERIMENTATION

Current work is based on improvement of precision during

test case selection of regression testing. This work also

compares three approaches for the same such as All-Test

case selection (ATCS), Selective-Test case selection (STCS),

Item Ranking based-Test case selection (IRTCS).

Subject Application & Metrics

Space program in SIR repository is used in this work as

program data. SIR repository has 1400 test cases of test pool

and faults which consists of 38 versions of the same

program. For instrumentation

of call stacks and call

coverage tree, Code Tune is

considered for the work. To

Clustering Based Test Suite Selection for Ranking of Program Execution Sequence Using Improved

Precision in Regression Testing

778

Published By:

Blue Eyes Intelligence Engineering &

 Sciences Publication
Retrieval Number G5724058719/19©BEIESP

populate the Program profile, forward analyzing of program

is needed, such that reports will be create in excel. Function

name denotes the Current traces Analysis of the codeis being

done perfectly before testing is being performed and test

cases are set to target given functions. Many versions will be

maintained for each progam, for eg: Nearly 38 different

versions are maintained for a program, but each program has

the difference from others with at least a single failure. The

main reason for experiment to be initiated between two

versions and then clusters the test cases by considering many

failures between considering its previous program trace

information.

Iterative programs are not treated when recording of trace

is done, but multiple traces can be studied once. Skipping of

loop calls will be done to single calls following the modified

algorithm [14]. Library functions which are conjure while

test case runs were removed, as we feel that their presence

may not be much appreciated in the work..

Method of Experimentation

The identification of defects can be done from the suite in

two ways:

1. By using the approach of test case selection and

identifying the efficiency of fault detection, test cases are

considered.

2. For considering number of test cases which depends on

algorithm and identify the number of defects

detected by each k test cases. Continue these steps till all

faults are identified.

Inclusiveness:

For considering C considerations, n of these tests Let’s

consider that A has n tests changes revealing for B and B’,.

Safest testing technique is the Regression testing if it is fully

inclusive.

Precision:

If A contains test cases, that are static for B and B’ then,

c suppose. The Precision of M relative to P and, P’, and T is

the percentage given by expression (100 * (A/B)) if n!=0 or

100% , if n = 0.eliminates A of tests.

Change history based test case selection [10]

Including Change history [5] in test case is an

appropriate approach, as there will be change in code with

respect to requirements.

Here in experimentation section (4), code difference in

code modules can be found with change history module and

creates a report on difference between versions. New code

changes can be reflected in change history with respect to

changes in code.

In experimentation if changes done to the test cases will

be reflected in the change history once the test case is run

successfully. Changes will be reflected immediately.

Not only to find the defect in the test cases, has it helped

to change the code when some changes in the code are

required. The approach is presented as follows:

1. Clusters will be formed based on most frequent tracing

of test cases.

2. Item set frequency Group can be formed basing on

item set frequency and same item frequency with

different items with can be clustered into sub

clusters.

3. Repeat this process till all test cases are clustered and

maximum no of frequency cluster are found.

4. Formation of Clusters includes sub-clusters combine

those test cases that are similar by:

4.1 When Test cases pocess like program profiles.

4.2 Test case is appropriate if all elements belong to

given program trace of other test case.

5. Select next test case based on Residue requirements

 based test case reduction.

6. Perform test case selection based on changes history

 components such as method addition, modification and

deletion.

7. For test case given, we need to look for test case of fault

finding type and do the below steps:

 7.1 Look whether test case is thru in version Vi-1.

 7.2 When the test case is thru then perform the

following:

7.2.1 Contrast the stack trace vs previous version Vi-

1.

7.2.2 Must apply sequence investigation on the same.

 7.2.2.1 Create different k-Sequence from

 thru and fail run test cases.

 7.2.2.2 Find Hamming distance based sequence

differencing on k-sequences.

 7.2.2.3 Sim and disSim sets are generated.

7.2.3 Ranking for thedisSim set generated elements basing

on

7.2.3.1 Method cohesion which is of any three forms

like common, potentially involved and

indispensably involved.

 7.2.3.2 Methods basing on Change history are added,

and ranks will be allocated to faulty components.

8. From regression selected safe test cases computed in

Step-7, compute the nearest similar test case from

clusters formed in step-1.

10. During regression testing minimize the no of test cases

by giving rank to test case basing on the following

criteria:

 a. Program spectra difference

 b. Difference in history change

 c. Cohesion in method.

11. Checkout the results are basing on the three

approaches

 a. ATCS

 b. STCS

 c. IRTCS

There are two sub functionalities in Change history

module like codeDiff and changes in records at course level

like function which is added, function which is modified and

function which is deleted from the diff engine and adds

them into addM, delM, modM. These lists can be used in

investigation for selection of test case.

It is evident that results were symbolic that all test cases

for history changes were introduced, helps in introducing

defects. Change types like new Comment and formatting of

existing changes [8] are not at all induced. Future study can

incorporate such changes as well.

Selection of Test case in change based, regression test

selection is taken-up with investigation, in which

weconsider Inclusiveness, Precision and Efficiency which

are important factors.

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-8 Issue-7 May, 2019

779

Published By:

Blue Eyes Intelligence Engineering &

 Sciences Publication
Retrieval Number G5724058719/19©BEIESP

Precision with respect to test case can be found using this

formula.

Tn (x) – Number of test cases available in a precise precision

improvement approach.

x – represents the precision improvement approach (ATCS),

(STCS), (IRTCS).

ATCS: Selection of all relevant and irrelevant test cases is a

criteria for inclusion of all test cases.

STCS: unplanned test cases are picked from inclusive test

case for precision improvement.

IRTCS: Test cases selected by following entire approach as

specified and ranks entire faulty modules before choosing

the confirmed modification declaring cases in form of

ranking the test cases from forming clusters to diagnosing

likely faults.

The evaluation (shown in TABLE-I) of this work is targeted

towards observation of precision of the approaches

specified.

COMPARISON OF APPROACHES

S.No

Total

Test

cases

Total

Defects

Number

of

Clusters

Average

Test cases

per cluster

All-Test

case

selection

(ATCS)

(1)

Selective-

Test case

selection

(STCS)

(2)

Percentage

Reduction

(STCS

compared

to ATCS)

Item Ranking

based-Test

case selection

(IRTCS)

(3)

Percentage

 Reduction

(IRTCS

compared to

IRTCS)

1 50 8 10 5 20 14 30 13 35

2 100 23 14 7 38 33 13.1 29 23.6

3 150 42 21 6.5 65 57 18.4 52 20

4 200 50 24 7.5 78 67 14.1 60 23

The above results depicted in table form are as shown in Fig-

9.

Figure 9: Comparison of approaches

Threats to validity:

When a program is executed, it generates varying program

traces for each correct run. Context sensitive test cases are

not part of current work.Multiple defects can be suggested

not identified.

By following requirements, designing of test suites are

carried out in this work and other criteria based test suites

will never be tested with this approach.

VII. CONCLUSION

Program traces can be represented as sequence of ordered

strings. Program traces can be represented as sub sequences

of length –K without losing generality. Comparing a test

case for Passed run and failed run is effective means for

identifying similar faults. Similar program traces reveal

more defects, when test cases are chosen from a similar

group of sequences/Clusters revealing defect(s).

The evaluation of this work reveals that clusters of test cases

were chosen to be tested on SUT using the approaches

ATCS, STCS and IRTCS, it is observed that better defect

detection was possible using the proposed IRTCS approach.

Current work is to be carried out where unique traces are

possible in GUI development and some methods must be

used as libraries event handlers. This will be a good

challenge for this current work.

REFERENCES

1. Sri vidhya J," Modified Genetic approach for Regression Testing Cost
Reduction", International Journal of Infinite Innovations in

Engineering and Technology, Volume 1, Issue 1, May 2014.

2. Alireza Khalilian and Saeed Parsa ,Bi-criteria Test Suite Reduction by

Cluster Analysis of Execution Profiles ,International Federation for

Information Processing ,CEE-SET 2009, LNCS 7054, pp. 243–256,
2012.

3. Mala, D.J., Mohan, V., “Quality Improvement and Optimization of
Test cases– A Hybrid Genetic Algorithm Based Approach”, ACM

SIGSOFT Software Engineering notes, Vol. 35(3), pp: 1-14, ACM

Press, 2010.

4. Osamu Mizuno, and Hideaki Hata,"Prediction of Fault-prone Modules

Using A Text Filtering Based Metric", International Journal of

Software Engineering and Its Applications, Vol. 4, No. 1, January
2010.

5. Ying, A.T.T.; Murphy, G.C.; Ng, R.; Chu-Carroll, M.C., "Predicting
source code changes by mining change history," Software Engineering,

IEEE Transactions on , vol.30, no.9, pp.574,586, Sept. 2004.

6. Xia Cai, Michael R. Lyu,"The Effect of Code Coverage on Fault
Detection under Different Testing Profiles",A-MOST '05 Proceedings

of the 1st international workshop on Advances in model-based testing,

ACM SIGSOFT Software Engineering Notes, Volume 30 Issue 4, July
2005.

7. Munson, J.C.; Elbaum, S., "Software reliability as a function of user
execution patterns," Systems Sciences, 1999. HICSS-32. Proceedings

of the 32nd Annual Hawaii International Conference on , vol.Track8,

no., pp.12 pp.,, 5-8 Jan. 1999.

8. Hassan, A.E.; Holt, R.C., "Predicting change propagation in software

systems," Software Maintenance, 2004. Proceedings. 20th IEEE

International Conference on , vol., no., pp.284,293, 11-14 Sept. 2004.

9. Frank Eichinger, KlemensBöhm, Matthias Huber,"Improved Software

Fault Detection with Graph Mining ",Proceedings of the 6th
International Workshop on Mining and Learning with Graphs (MLG),

Helsinki, Finland, 2008.

10. Reiss, S.P.; Renieris, M., "Encoding program executions," Software

Engineering, 2001. ICSE 2001. Proceedings of the 23rd International

Conference on , vol., no., pp.221,230, 12-19 May 2001.

11. Gang Shu, Boya Sun, Andy Podgurski, Feng Cao, "MFL: Method-

Level Fault Localization with Causal Inference", ICST, 2013, 2013

IEEE Sixth International Conference on Software Testing, Verification
and Validation ICST 2013.

12. Narendra Kumar, A. RamamohanReddy,"Frequent Segment Clustering
of Test cases for Test Suite Reduction",WSEAS Transactions on

Computers, Vol-13,July 2014.

13. Narendra Kumar, A. RamamohanReddy,"Frequent Item Test Case
Clustering Based Test SuiteReduction", The Mediterranean Journal of

Computers and Networks,Vol-10, issue-2,249-260.

Clustering Based Test Suite Selection for Ranking of Program Execution Sequence Using Improved

Precision in Regression Testing

780

Published By:

Blue Eyes Intelligence Engineering &

 Sciences Publication
Retrieval Number G5724058719/19©BEIESP

AUTHORS PROFILE

Mr. B. Bhaskar Kumar Rao is an Assistant

Professor from Department of IT, Sree Vidyanikethan

Engineering College, A. Rangampet. He
has done his M. Tech in Department of CSE from

SRM University, Chennai and B.E from Sree

Vidyanikethan Engineering College, A. Rangampet.
His area of research includes Software Engineering,

computer vision related approaches.

 Dr. R. Vasanth Kumar Mehta is currently

working as an Associate Professor, Department of
CSE at SCSVMV. He obtained his Ph.D. in CSE

from SCSVMV and M.Sc. (Tech) and B.Sc. in CSE

from BITS Pilani His research interests are data
mining, machine intelligence and image processing.

 Dr. B. Narendra Kumar Rao, obtained

Bachelor Degree in Computer Science and

Engineering from University of Madras, M.Tech in
Computer Science from JNTU, Anantapur, Ph.D.

from JNTUH, Hyderabad. He has more than 18 years

of experience in Area of Computer Science and
Engineering which includes four years of Industrial

Experience and Twelve years of Teaching

Experience. Research interests include Software
Engineering, Deep Learning and Embedded Systems. Currently he is

working as Professor, Chairman Board of Studies in Department of

Computer Science and Coordinator, IQAC at Sree Vidanikethan Engineering
College

