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 

Abstract—In this work we investigates the effects and 

consequences of multicollinearity on both standard error and 

explanatory variables in multiple regression, the correlation 

between X1 to X6 (independent variables) measure their 

individual effect and performance on Y (Response variable) and it 

is carefully observes how those explanatory variables 

intercorrelated with one another and to the response variable. 

There are many procedures available in literature for detecting 

presence, degree and severity of multicollinearity in multiple 

regression analysis here we used correlation analysis to discover it 

is presence; we use variance inflation factors, tolerance level, 

indices number, eigenvalues to access fluctuation and influence of 

multicollinearity present in the model. Multicollinearity was 

discovered in this research work with a severe proportion using 

arrays of correlation analysis procedure which affects the 

performance of the explanatory variables present in the model by 

making it less independent and more redundant as it should not 

be. Collinearity inflates variance of estimates and brings change 

in direction and signs of the co-efficient of the estimates leading to 

unrealistic erroneous inference, wrong interpretation and 

instability among the predictor variables. standard error is 

discover to be slightly height which directly affect the accuracy 

and precision of the final result from the analysis, it bring type 1 

error during and after the hypothesis testing and finally 

undermined the overall inference of the entire analysis interest 

and is in good agreements with the finding of Complete 

elimination of collinearity is not possible but in this work we 

reduce it is degree of intensity to enhance the performance of 

independent variables and error term in the model. 

 Index Terms—Multicollinearity, predictor variable, standard 

error and multiple regression 

1. INTRODUCTION 

Multicollinearity is an area that recently getting attention 

from researchers gradually as a results of the development 

and level of advancement from many recent statistical 

software which is always simplifying the analysis of multiple 

and complicated data to more easier, precise and accurate 

level than before. recently scholars are trying to minimize the 

errors in their research which exactly affect the accuracy and 

precession of their final work and multicollinearity is playing 

a vital role on this problem from use of simple linear 

regression and multiple regression model, it also have many 

unfavorable effects on the estimated coefficients in a multiple 
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regression model despite it is very essential that researchers 

are trains in such a way that they can always check 

multicollinearity to avoid it is deficiency in the analysis more 

especially by examining the latent roots and latent vectors, 

tolerance level, correlation matrix and variance inflation 

factors are all use to access multicollinearity in a given  date 

to insure the independency of the explanatory variable before 

analysis Edward R. Mansfield and Billy P. Helms (1982). 

Investigation has it that serious increase in multicollinearity 

level among the explanatory variable is making it 

unrealistically erroneous and highly vulnerable and bring a 

serious consequences to the coefficient of the parameter 

estimate during analysis Graham (2003). 

Multicollinearity as a statistical phenomenon where by it 

exist when two or more of the explanatory variables in 

regression model are moderately, severely or highly 

correlated with one another. Where by a predictor variable is 

linearly predicted from or by one of the explanatory variables 

present in the same regression model with a nontrivial degree 

of accuracy which directly alter it is independent nature and 

seriously affect the coefficient of estimates in multiple 

regression negatively. Small difference from the data base 

source due to poor experimental designed produce a serious 

multicollinearity issue Judge (1988). It has been carefully 

observed that multicollinearity does not affect the reliability 

or productive power of multiple regression models at all. But 

now discover to be seriously disturbing if is to 

acknowledging the individual contributions of performances 

of the independent variables present in the model to the 

response variable. Correlation analysis always here explain 

which explanatory variable is redundant than others and 

which predictor variable is responsible for such redundancy. 

If one of the predictor variables is directly a linear function of 

another explanatory variable as result of a higher correlation 

in between two variables then collinear effect is a problem in 

the model D. Stephen Voss (2004). Currently researchers are 

making good effort to specify and classify the methods of 

identification of collinear effects base on the type of data 

source and nature of multicollinearity expected be it data base 

or as a result of mathematical artifact against the most 

well-known general method of testing both type by variance 

inflation factor and Tolerance level index number most of the 

time Johnston (1972) and Kroll et al. (2004). 

Multicollinearity hinders some computer software from 
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performing effectively more especially if the task to be done 

has to do with purely independent variables. Indication of 

multicollinearity is showing lack of pure independency 

among the predictor variables due to  the little difference in 

the data which bring a wider range among parameter 

estimates, slightly higher value for the error term 

coefficients, law significant levels values, higher R
2
 and 

typically wrong sign of coefficients (Greene 2000). 

1.1  Why Is Multicollinearity a Problem  

Prediction of response variable from predictor variable in 

multiple regression models has very little or no much trouble 

with the term multicollinearity. This is because it always 

predict with higher accuracy and precision due to the effect of 

linearity on classical linear regression model and the overall 

values of R
2
 and adjusted value of R

2
 is always quantify how 

well the response variable is been estimated. If the goal of the 

analysis is to estimate how each individual explanatory 

variable affect the response variable in the model then 

multicollinearity is a serious issue because a particular 

p-value will tend to be higher than necessary and a very wider 

confidence interval which may include zero.  This will give 

no confident on some statistics values after the analysis 

because weather an increases in the explanatory variables 

will produce the necessary increases or decreases of the 

respond variable Ranjit kumar paul (2008). It has been 

proved that the collinear effect that result in multicollinearity 

is more severe on a small sample size than larger sample size 

data statistically this is because smaller sample always 

produce higher correlation and a large standard error Saman 

Babaie-Kafaki & Mahdi Roozbeh (2017). 

1.2  Consequences of Data Base Multicollinearity 

Collinearity can give wrong estimators for the regression 

coefficients, inflates both the error term and partial t-tests 

produce inaccurate inference and non-significant p-value at 

all and finally alter the aim of the analysis Shalabh (2016). 

Collinearity increases parameter variance estimates 

unnecessarily and undermine the aims of the analysis Greene 

(1990). Investigation on both predictor variables and 

explanatory variables is all for the aims to excess the 

collinearity in between all the predictor variables and detects 

which one has the most alarming collinear relationship that 

must be reduce to increase the productivity and enhance 

independency among the predictor variables. Therefore 

higher correlation in between predictor variables is finally 

making the predictor variables to be not properly independent 

due to presence of multicollinearity Johnston (1984). 

2. METHOD AND MATERIAL 

In our effort to makes investigation on multicollinearity we 

obtained and study the data of about 200 samples to excess 

multicollinearity presence and degree of intensity in data 

base multicollinearity to be able to upper practical solution to 

the collinearity problem. 

Therefore from regression equation we have; 

Y= β0 +β1X1i+ β2X2i+ β3X3i+ … + Βkxki+ ᶓ   ……… (1) 

Where β0 = intercept, β1 to βk is the partial slope of the 

coefficients  

ᶓ= error term 

i=i
th

 is the observation n. being the size of our sample from 

a population 

Let our response variable be Y  

Let our Independent variables be X1, X2, X3, X4, X5, X6 

respectively. 

Let the Standard error be ᶓ 

From our effort to investigate multicollinearity effects on 

both standard error and predictor variables  

A model is now specify as  

Y=f(X1, X2 , X3 ,X4 , X5 , X6)+ ᶓ β1      ….……...(2) 

Re-writing (2) in more of the explicit form it will now 

exactly be 

Y= β0 + β1X1 + β2X2 + β3 X3+ β4 X4+ β5 X5 + β6X6 + ᶓ . (3) 

Now we have 

Y= β0 +β1X1i+ β2X2i+ β3X3i+ β4X4i+ β5X5i+ β6X6i … + 

Βkxki+ ᶓ               …………..(4) 

From the relationship above Equation (4) is identifying ki  

predictors variables from multiple regression models obtain 

from the explanatory variable such as X1….X6 and constant 

terms that always assumed to influence the respond variable 

regressed. The linear relationship from equation (1) hold for 

all hypertensive patients only if we could have a reasonable 

value of the explanatory variables and respond variable from 

the standard error which is the error term due to disturbances 

in multiple regression model, This is done by fitting a 

regression line to the observed sample data as an 

approximation to the true line. If then the true relationship 

between X1 to X6 and Y is as given in Equation (3). The raw 

data exhibits a strong collinear relationship those covariates 

and hence requires some treatment to reduce the effect from 

collinearity. We then implement both the ridge method, with 

two different choices of shrinkage parameters X1 to X6 and 

the perturbation method on the data to obtain alternative 

estimators Blaze, T. J., and Ye, F. (2012).  

2.1 Covariance Method 

British scientist who happen to be a good biometrician as 

well a good statistician by profession developed what we 

called Karl Pearson’s co-efficient of correlation which is one 

of the recognized way of checking the interrelationship 

between two variables X and Y today is been used widely in 

science, social science and management. it is usually been 

obtained by r(X,Y) or rxy or it can simply be written as r. and 

is defined as the numerical measure of the linear relationship 

between two or more variables and can also be in a given 

relationship as the ration of the covariance between X and Y 

which is written by Cov(X,Y)to the product of the standard 

deviation of X and Y. it can be written as ; 
( , )

X Y

Cov X Y
r

 


               ..…… (5) 

That means if (x1,y1), (x 2, y2), (x 3,y3),…, (xn ,yn) are the 

n-pairs of observation of the variable X and Y in a Bivariate 

Distribution so it will be  

1

1
( ) ( )( )

2

n

i

Cov XY X X Y Y


  
       ….… (6) 

And 

21
( )X X X

n
  
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Therefore similarly 

21
( )Y Y Y

n
  

       ………... (7) 

By taking the summation over n pairs of observation and 

subtracting equation (2) to (4) in to equation (1) we have 

  

2 2

1

1 1
( ) ( )

X X Y Y
n

X X Y Y
n n

 

  
     

  



 
    …..….. (8) 

Therefore  

  

2 2

1

1 1
( ) ( )

X X Y Y
n

X X Y Y
n n

 

 



 
      ……..…. (9) 

  

2 2

1

1
{ ( ) * ( ) }

X X Y Y
n

X X Y Y
n

 

 



 
 

  
2 2( ) * ( )

X X Y Y

X X Y Y

 

 



               ………. (10) 

Therefore 

r=

  
2 2( ) * ( )

X X Y Y

X X Y Y

 

 



         ………… (12) 

Than equation (9) can be written as 

r=
2 2

.dx dy

dx dy



          .………. (13) 

Whereas dx and dy donate the actual deviation of variable 

x and y, the value from their arithmetic means  X  and Y

respectively such that; 

dx= X- X ,  dY= Y-Y  

Now by simplifying equation (2) which is the covariance 

of X and Y. Cov(x,y). 

Cov (X, Y) = 

1
( )( )X X Y Y

n
 

    …..…….. (14) 

 
1

XY XY XY XY
n

  
    …..……... (15) 

1 1 1 1
. .XY X Y Y X nXY

n n n n
    

...….…. (16) 

Since    and    are constant term here and from  

CX C X   And 
C nC  

Where, and a.  is a constant 

Therefore from (14) 

1 1 1 1
. .XY X Y Y X nXY

n n n n
    

   ..…. (17) 

Than we have 

1
XY XY

n


              ………….…. (20) 

Therefore covariance of X and Y is now given by  

Cov (x,y)= 

1
XY XY

n


 

1 1 1
.XY X Y

n n n
  

 

1 X Y
XY

n n n

  
    
  

 


   ………...... (21) 

2

1

X Y

n n
XY

n n

   
     
   
 
 
 
 

 



  2

1
n XY X Y

n
    

          ………. (22) 

But  

2 2 2 21 1
( )X iX X X X

n n
     

 

 
2

22 2

2

1 1X
X n X X

n n n

 
         

 


  

 ………. (23) 

Therefore substituting equation (22), (23) and (20) in to (5) 

we have 

 

X Y

Cov XY
r

 


 

  

   

2

2 22 2

2 2

1

1 1
.

n XY X Y
nr

n X X n Y Y
n n

  


    
      

  

   
….…. (24) 

  

   
2 22

n XY X Y
r

n X X n Y Y




    
      

  

   
     …... (25) 

 

This is what we called Karl-peason’s correlation 

co-efficient is also known as the productive moment 

correlation co-efficient which we used I finding the 

relationships between explanatory variable and response 

variable to discover the exact relationship. 

2.2 Tolerance level  

Tolerance as an important factor and measure of 

multicollinearity present in which all researcher expect and 

work towards having higher tolerance level statistically to 

avoid linear relation in between independent variables. This 

is because law tolerance level affect the final result of the 

research and undermine it is final result. Tolerance level is 

obtained by calculating auxiliary individual value of R
2
-value 

against other explanatory variables in multiple regression 

models during analysis against other predictor variables in 

the model and subtracts R
2
- value from 1. (1- R

2
) this will 

give a tolerance level of an individual variable with a range 

normally from 0 to 1 it is well known that a tolerance value of 

0.50 and above  is for no serious concern because it indicate 

law multicollinearity and a value around  0.20 indicate a 

serious and  higher multicollinearity. Tolerance level is also 

the same as the reciprocal of the variance inflation factor. 
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2.3 Variance Inflation Factor 

Variance inflation factor indicate how far the variances of 

estimation for the regression confidents are inflated 

compared to when the explanatory variables are not 

orthogonal Neter, wasserman and Kutner (1989).Variance 

inflation factor is a phenomenon for measure the amount of 

multicollinearity in a given multiple regression model, A 

multiple regression model is used to test the effect of multiple 

variables on a particular outcome. The dependent variable is 

the outcome that is being acted upon by the independent 

variables, which are the inputs into the model. 

Multicollinearity exists when there is a linear relationship, or 

reasonable correlation between some independent variables 

or inputs from the predictor variables. Multicollinearity 

creates a problem in the multiple regressions because since 

the inputs are all influencing each other, they are not actually 

independent and it is difficult to test how much the 

combination of the independent variables affects the 

dependent variable, or outcome, within the regression model. 

Variance inflation factor indicate how is the variance and 

standard error of the coefficient estimate in collinearity is   

being inflate, the variance inflation factor for the estimated 

coefficient bk – donate VIFk (Variance inflation factor) is a 

factor by which the variance is been change;- 

Let us consider estimation in which any Xk is a prediction 

such that 

Yi = β0  + βk Xik + ᶓi        ……………..….(26) 

Therefore the variance of estimated coefficient bk  is given 

by;- 
2

2

1

var( )

( )
k n

ik k

i

b

X X








   ……………….. (27)

 

Note that we put (min) in order to indicate it is the smallest 

value that variance can be and  based on keeping the track of 

this base line variance it can show how much the variance of 

bk  is been changed if we add correlated predictor to our 

multiple regression model, now we shall consider such model 

with many predictors. 

0 1,...., ,...., .i i i k K P I P IY X X X           
                  ………… (28) 

Now if Predictors are collected with some predictor 

variables Xk than the variance bk  is changed, therefore it will 

be shows as the variance of bk below;- 

When R
2

k is the R
2
-value which is obtained by taking 

regression of K
th

 predictor on the remaining predictors Note 

that the greater the linear dependency among the predictors 

Xk and the other predictors, the larger the R
2

k value and as the 

above formula suggested then the larger the R
2

k  value the 

larger the variance of bk . 

To express this more clearly we take the ratio  
2

2
2

1

2

min

2

1

1
*

1
( )

( )

( )

( )

n

K
ik k

k i

k

n

ik k

i

R
X X

Var b

Var b

X X



















.……….… (29) 

      = 
2

1

1 KR       ….………… (30) 

VIFk = 
2

1

1 KR
           ………. (31) 

 

Above is what we called variance inflation factor for the 

K
th 

predictors that is 

Whereas R
2

k is the R
2 

– value obtained by regressing the 

K
th

 predictor on the remaining predictors note that the 

variance inflation factor exist for each of the K predictor 

predictors in multiple regression model.   

The variance inflation factor shows how the estimate 

variance of K
th

 regression coefficient is changed above what 

it should be more spatially if the value of the coefficient of 

estimation R
2
 is totally equal to zero, from the other hand in a 

situation where K
th

 independent variable is perfectly has no 

any correlation in between each other than it will achieved 

orthogonally to the other independent variable in the analysis, 

therefore VIF will definitely provide a reasonable and serious 

indication of the effect of collinearity on some sample 

fluctuations of the parameters Robert M. O’brien (2007). 

2.4 Farrar-Glauber Test  

The procedures for detecting multicollinearity such as 

t-test which is a type of inferential statistics used to 

determine if there is a significant difference between the 

means of two or more groups of the predictor variables, 

which may be related in certain features. Chi Square statistic 

is commonly used for testing relationships between 

categorical variables.  The null hypothesis of the Chi-Square 

test is that no relationship exists on the categorical variables 

only if they are independent “F Test” is a catch-all term for 

any test that uses the F-distribution. In most cases when 

people talk about the F-Test, what they are actually talking 

about is The F-Test to Compare Two Variances. However 

the f-statistic is used in a variety of tests including regression 

analysis. Adeboye N.O, Fagoyinbo I. S and Olatayo T.O 

(2014). 

3. RESULTS AND DISCUSSION 

A sample of about 200 data was collected to investigate 

and test the present of multicollinearity and provide a general 

solution on how to reduce the negative effect of 

multicollinearity on both explanatory variables and error 

term from multiple regression analysis models. this is making 

an independent variables present in multiple regression 

model to become not fully or moderately independent due to 

presence of collinear effects in between predictor variables 

during analysis.  
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Fig. 1 Graphical Illustration Of X1 (in Blue) and X2 (in Red) Variables 

 

From the graphical illustration above figure 1 expresses x1 

and x2 visually as the two variables with higher correlation 

which indicates relationship and shows the same pattern for 

both x1 and x2 which means an element of similarity or a copy 

from one independent variable to another exist after the first 

analysis. 

 

 
Fig. 2 Graphical Illustration Of X3 (in Yellow) and X5 (in Blue) Variables 

 

From the graphical illustration above figure 1 where it 

expresses x1 and x2 visually as the two variables with higher 

relationship and shows the same pattern for both x1 and x2 

which means an element of similarity or a copy from one 

independent variable to another that is to say some 

similarities exist in between which indicate little or no much 

independency among the explanatory variables in the model 

that is to say multicollinearity is present but after the 

treatment to reduce it to minimum level now we are 

successfully been able to reduced multicollinearity after the 

second analysis, from figure 2 both x3 and x5 with higher 

relationship now visually shows different pattern which 

indicate individual independency among the explanatory 

variables by showing different behavior on the graphical 

illustration. 

A Correlation analysis was conducted and a severe 

correlation in between X1 and X2 was discover to have a 

significance value of 0.344 at 0.01 level (2tailed) which 

purely indicates multicollinearity level present in the date and 

a treatment and procedure must be conducted to bring it to a 

lower level than what it is right now to reduce collinear 

effects that will increases the independence of all explanatory 

variables present in the model for better outcome from the 

data. 

 

 

 

TABLE 1. Model Summary 

Mod

el 

R R 

Square 

Adjusted R 

Square 

Std. Error of 

the Estimate 

1 .196
a
 .039 .009 28.54913 

a.  Predictors: (Constant),  X1, X2, X4, X5, X6, and X7 

 

From the above table 1shows the co-efficient of 

determination R-value to be 0.196 for the entire explanatory 

variables with R
2
 value 0.039 and adjusted R

2 
value of 0.009 

having the overall standard error of estimation 0f 28.54913 

indicating the level of instability due to error term. 

 

TABLE 2. ANOVA 

Mo

del 

 Sum of 

Squares 

df Mean 

Square 

F.  

Sig. 

1 Regre

ssion 

6312.583 6 1052.0

97 

1.29

1 

.26

3
b
 

 Resid

ual 

157305.172 193 815.05

3 

  

 Total 163617.755 199    

a. Dependent Variable: Y 

b. Predictors: (Constant), X1, X2, X4, X5, X6, and X7 
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Above table 2 showing the real analysis of variance from 

the model where alpha value is 0.05 that is 5% level of 

significant with the sum of the squares, degree of freedom 

and mean square for regression and residual respectively. It 

providing F-statistics calculated at 1.291 while the 

F-statistics from F-table at 6 and infinity for the degree of 

freedom stand at 2.191 showing the acceptance of Ho; at 5% 

level of significant. Therefore since calculated F-value is less 

than the table F- value our assumption is within the range. 

 

 

TABLE 3. Coefficients 

Model  Unstandardized 

Coefficients 

   Collinearity Statistics 

1 (Constant) B Std. Error Standardized Coefficients Beta t Sig. Tolerance VIF 

  172.111 132.984  1.294 .197   

 X1 -.050 .143 -.028 -.350 .727 .805 1.243 

 X2 .110 .154 .055 .712 .477 .831 1.204 

 X4 .152 .137 .082 1.107 .270 .910 1.099 

 X5 -.134 1.289 -.008 -.104 .917 .960 1.042 

 X6 -.370 .150 -.188 -2.466 .015 .855 1.169 

 X7 .151 .302 .036 .502 .616 .979 1.022 

a. Dependent Variable: Y 

 

From above table 3 analyzing variance inflation factor as a 

measure of collinearity in between the explanatory variables 

in the model indicates presence of  multicollinearity from it is 

values of x1, x2, x3, x4, x5,  and x6 which are 1.243, 1.204, 

1.099, 1.042, 1.169 and 1.022 respectively with the 

regression coefficients for instance from the VIF value of x1 

equal to 1.243 it means that the variance of estimate 

coefficient of x1 is perfectly inflated by a factor of 1.243 and 

this is so because x1 and x2 has higher correlation among all 

the predictor variables in the model and the lower tolerance 

level from first analysis on table 3 with the range around 

0.979 to 0.805. This is the percentage of the variance in the 

independent variable that has never been accounted for by 

other independent variables in the model.  

 

TABLE 4. Collinearity Diagnostics 

Mode Dimension Eigenvalue Condition 

Index 

Variance Proportions  

    (Constant) X1 X2 X4 X5 X6 X7 

1 1 6.867 1.000 .00 .00 .00 .00 .00 .00 .00 

 2 .063 10.463 .00 .65 .03 .03 .00 .01 .00 

 3 .032 14.699 .00 .22 .57 .07 .00 .10 .00 

 4 .018 19.509 .00 .09 .07 .23 .00 .82 .01 

 5 .017 20.262 .00 .04 .27 .65 .00 .00 .06 

 6 .003 44.562 .01 .00 .05 .00 .02 .02 .91 

 7 .000 236.283 .99 .00 .01 .00 .98 .04 .01 

a. Dependent Variable: Y 

 

Condition indices as above the threshold value is usually 

found to be in the range of 15 to 30 and with 30 as the most 

commonly used value indicating the level of the combined 

collinearity effect among the explanatory variables present in 

the model By applying treatments and procedure of reducing 

multicollinearity in the data base source we have the 

following improvement again. 

 

TABLE 5. Model Summary 

Model R R 

Square 

Adjusted R 

Square 

Std. Error of 

the Estimate 

1 .195
a
 .038 .013 28.48449 

a. Predictors: (Constant); X2, X4, X5, X6, X7.[ X1, X2, X4, 

X5, X6, and X7] 

 

From table 1 the standard error of estimation now slightly 

improved to 28.48449 from the previous one of 28.54913 

which means after the reduction of collinear affect now the 

explanatory variable are much more independent than before. 

 

TABLE 6. ANOVA 

Mo

del 

 Sum of 

Squares 

df Mean 

Squa

re 

F Sig. 

1 Regressi

on 

6212.69

9 

5 1242.

540 

1.531 .182
b
 

 Residual 157405.

056 

194 811.3

66 

  

 Total 163617.

755 

199    

a. Dependent Variable: Y 

b. Predictors: (Constant); X2, X4, X5, X6, and X7 

 

Above table 6 showing the analysis of variance from the 

model after removing the most violating of the explanatory 

variable in the model where alpha value is 0.05 that is 5% 
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level of significant with the sum of the squares, degree of 

freedom and mean square for regression and residual 

respectively. It provide  F-statistics calculated at 1.531 with 

significance at 0.82 while the F-statistics from F-table at 6 

and infinity for the degree of freedom stand at 2.231 showing 

the rejection of H1; at 5% level of significant. Therefore since 

calculated F-value is less than the table F- values our 

assumption is within the range and indicates reduction in 

multicollinearity. 

 

 

TABLE 7. Coefficients 

Model  Unstandardized 

Coefficients 

    Collinearity Statistics 

1  B Std. Error Standardized Coefficients Beta t Sig. Tolerance VIF 

 (Constant) 169.782 132.517  1.281 .202   

 X2 .089 .142 .045 .626 .532 .979 1.021 

 X4 .150 .137 .081 1.102 .272 .910 1.099 

 X5 -.116 1.285 -.006 -.090 .928 .962 1.040 

 X6 -.381 .147 -.194 -2.592 .010 .890 1.124 

 X7 .155 .301 .037 .514 .608 .980 1.021 

a. Dependent Variable: Y 

 

after the second analysis From above 7 analyzing variance 

inflation factor as a measure of collinearity in between the 

explanatory variables in the model indicates presence of  

multicollinearity from it is values of X2, X4, X5, X6, and X7  

which are  1.021, 1.099, 1.040 1.124 and 1.021 respectively 

with the regression coefficients for instance from the VIF 

value of x1 equal to 1.243 it means that the variance of 

estimate coefficient of x1 is perfectly inflated by a factor of 

1.021 against the initial value of 1.243 and this is so because 

x3 and x5 has higher correlation among all the predictor 

variables in the model and the lower tolerance level from first 

analysis on table 3 with the range around 0.979 to 0.805. Now 

improved after the second analysis. This is the percentage of 

the variance in the independent variable that has never been 

accounted for by other independent variables in the model. 

multicollinearity now drastically reduced by removing the 

most violating of the explanatory variable with lower t-value, 

which is x1 and run the second analysis after which it shows 

an improvement of VIF X2, X3, X4, X5, and X6 which are 

1.021, 1.099, 1.040, 1.124 and 1.021 respectively as shown 

on table 7 and finally indicate a serious reduction in 

multicollinearity level in the model and increases the 

tolerance level range from 0.980 to 0.890 on table 7 the 

tolerance now is moderately enhanced and improved. 

 

 

Table 8. Collinearity Diagnostics 

Mode Dimension Eigenvalue Condition 

Index 

(Constant)                    Variance Proportions  

      X2 X4 X5 X6 X7 

1 1 5.923 1.000 .00  .00 .00 .00 .00 .00 

 2 .037 12.709 .00  .70 .11 .00 .06 .00 

 3 .019 17.498 .00  .06 .04 .00 .82 .04 

 4 .017 18.701 .00  .16 .85 .00 .04 .04 

 5 .003 41.381 .01  .07 .00 .02 .02 .91 

 6 .000 219.219 .99  .01 .00 .98 .05 .01 

a. Dependent Variable; Y 

 

Condition indices as above the threshold value is usually 

found to be in the range of 15 to 30 and with 30 as the most 

commonly used value indicating the level of the combined 

collinearity effect among the explanatory variables present in 

the model shows moderate improvement after the second 

analysis as it has indicated in above two tables 4 and 8.  

4. CONCLUSION 

Multicollinearity from is not a problematic some time 

especially if the aims of the analysis is to use multiple 

regression for prediction purposes, it will be accurate as it is 

supposed to be despite the presence of multicollinearity, 

where the problem lies is if to check the contribution of each 

individual independent variables In the model to the response 

variable in which it has to do with the co-efficient of 

correlations in between all of the explanatory variables. some 

of the factors are definitely a bit redundant in the model, the 

coefficients of regression and the standard error are increased 

unnecessarily in response it means co-efficient of some 

independent variables has turn to be unrealistic and 

insignificant, that is where multicollinearity is a serious 

problem because it is making some of the predictor variables 

more or less independent then as it is supposed to be, we 

accessed it is level, severity and degree, in which either 

dangerous not even the moderate but a severe 

multicollinearity was found in this work, we reduced it to 

minimum by dropping the most violating of the predictor 

variables in the model, runs the second analysis and 
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investigates VIF, tolerance level, index number, standard 

error as phenomenon which measure the level of 

multicollinearity among the explanatory variables in multiple 

regression mode, which is now find to be significantly 

enhanced and the VIF, tolerance level, index number, 

standard error are meritoriously improved, it has now been 

successfully reduced to a minimum level of multicollinearity 

and finally all independent variables are now much more 

better independent than before.  
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