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 

Abstract: In this paper we study the properties of prime radical 

of an ideal in a ternarysemigroup. We characterize different 

classes of ternarysemigroups by their properties of their radicals 

and nilpotent. We introduced and charaterize the notions of 

radical ideal generated by P in ternarysemigroups.     

I. INTRODUCTION 

The literature of ternary algebraic system was introduced 

by D.M.Lehmer in 1932. The notion of ternarysemigroups 

was known to S. Banach.  

He showed by an example that a ternarysemigroup does 

not necessarily reduce to an ordinary semigroup. Bindu [2] 

developed the properties of prime and maximal ideals in 

ternarysemigroups.  

Some significant results are given in [3,4 ].  

II. MAIN RESULT 

Definition 2.1: Let P be an ideal of a ternarysemigroup T. 

Then primeradical of P, symbolized  by β(P) is defined as  

 β(P) ={  ∩ of all primeideals of T each of which contains 

P}. 

Definition 2.2: Let T  be a Ternarysemigroup and Q be an 

ideal of T. Then Q  is called nilpotent ideal if Q2n+1 = 0 for  

some n∈Z and n ≥ 0. 

Theorem 2.3: For an ideal P of a ternary semigroup T. 

Then 

 (a)   P ⊆ β(P).  

(b) If A is a primeideal of T then P ⊆ A if  and only if  

β(P) ⊆ A. 

(c) β(P) ⊆ β(Q)   where Q is an ideal in T satisfying the 

condition    P⊆Q. 

(d) β(P) is a semi primeideal of T. 

(e) β(P) = β(P2n+1); n∈Z and n ≥ 0. 

(f) Every nilpotent element of T is contained in  β(P) 

(g) β(β(P)) = β(P). 

Proof:  By the definition of primeradical we can easily 

prove (a),(b), (c). 

 (d) We know that  β(P) is an ideal of T..  Let R3 ⊆ β(P); 

where R is an ideal of T.  

Now β(P) = ∩ {Ai/P ⊆ Ai, Ai is a primeideal in T}.  So R3 ⊆ 

Ai, ∀ Ai. Then Ai is prime; R ⊆ Ai, ∀ Ai. Therefore R ⊆ β(P). 

Hence β(P) is a semi primeideal of T. 

(e) P  is an ideal in T, P2n+1 ⊆ P; n ∈Z  and n ≥ 0.  Thus by 

(c), β(P2n+1) ⊆ β(P). 

Supoose x ∈ β(P). Now β(P) = ∩{Ai/P ⊆ Ai, Ai is  

prime ideal in T}. 
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Then x ∈ Ai ∀ Ai. Suppose  we assume that  x ∉ β(P2n+1). 

Then ∃ a primeideal  B ∈ T ∋ B ⊇ P2n+1 and x ∉ B.  Since B  is 

prime,  P2n+1 ⊆ B ⇒ P ⊆ B whence B is some Ai, Which is  a 

contradiction.  Hence x ∈ β(P2n+1). Hence   β(P) =β(P2n+1). 

(f) Let M be the nilpotentideal in T. Then M2n+1 = {0} for 

some n∈Z  and  n ≥ 0. Hence M2n+1 ⊆ β(P).  Further  M2n+1 ⊆ 

Ai ∀ Ai ⊇ P and Ai is a primeideal. Then M ⊆ Ai ∀ Ai. 

Therefore M ⊆ β(P). 

(g) By (a); P ⊆ β(P). By (c)  β(P) ⊆ β(β(P)). Let x ∈ 

β(β(P)) and {Ai}i∈I be the group of primeideals in T ∋ P ⊆ Ai 

∀ i ∈ I. By  the definition β(P) ⊆ Ai ∀ i ∈ I. Whence β(β(P)) ⊆ 

Ai. Thus    x ∈ Ai ∀ i ∈ I. Whence x ∈ β(P).  Hence  β(β(P)) = 

β(P). 

Theorem 2.4: [4] Let P be an ideal in a ternarysemigroup 

T. Then β(P) = {t ∈ T/ every m-system in T which contains t, 

has a nonempty intersection with P}. 

Proposition 2.5: Let P be an ideal in a ternarysemigroup 

T. If x ∈ β(P) then ∃  an integer n ≥ 0  ∋ x2n+1 ∈ P. 

Proof: Let x ∈ β(P). Then by theorem 2.4, every m- system 

in T containing x has a nonempty intersection with P. 

Consider M = {x2n+1/n ∈Z and n ≥ 0}. Then M is an m- 

system containing x.  Therefore M ∩ P ≠ ∅. Then ∃ an integer 

n ≥ 0 ∋ x2n+1 ∈ P. 

Proposition 2.6: Suppose T is a commutative 

ternarysemigroup and  M is an m-system in T  which contains 

x. Then ∃ an integer n ≥ 0 ∋ x2n+1ab ∈ M where a,b ∈ T. 

Proof: We recall the definition of commutativity and 

m-system of T. Since x ∈ M, ∃ a1,a2,a3,a4 in T ∋ xa1xa2x ∈ M 

or xa1a2xa3a4x ∈ M or  

xa1a2xa3xa4 ∈ M or a1xa2xa3a4x ∈ M. This  will imply  that 

x(a1xa2)x ∈ M or T being commutative, x3a1a2 ∈ M or 

x3a1a2a3a4 ∈ M. 

Let x3a1a2 ∈ M. Then ∃ a5,a6,a7,a8 ∈ T ∋ x5a1a2a5a6 ∈ M or 

x5 a1a2a5a6a7a8∈ M. 

Let x3a1a2a3a4 ∈ M. Then ∃ b1,b2,b3,b4 ∈ T ∋ x5a1a2a3a4b1b2 

∈ M or x5a1a2a3a4b1b2b3b4 ∈ M. Proceeding in this process we 

get for every integer n ≥ 0, x2n+1ab ∈ M for some a,b ∈ T. 

Proposition 2.7: Suppose P be an ideal in a commutative      

ternarysemigroup T ∋ x2n+1 ∈ P, where x ∈ T, n ∈ Z and n ≥ 0. 

Then x ∈ β(P). 

Proof: Let M be any m-system in T  and x∈T. Then by   

above Proposition 2.6, x2n+1ab ∈ M, for some a,b ∈ T. As P is 

an ideal and x2n+1 ∈ P, x2n+1ab ∈ P. So M ∩ P ≠∅. Therefore by 

Theorem 2.4, x ∈ β(P). 

By above  Propositions 2.5 and 2.7 we prove  the following 

theorem. 

Theorem 2.8: Let T be a commutative ternarysemigroup 

and P be an ideal of T. Then β(P) = {x ∈ T/x2n+1 ∈ P for some 

n∈Z+  and n ≥ 0} 

 

 

 

 

Primeradicals in Ternary Semi Groups 

Seetha Mani. P, Sarala.Y, Jaya Lalitha. G 



 

Primeradicals in TernarySemiGroups 

 

1404 

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  
Retrieval Number: F12840486S419/19©BEIESP 

DOI: 10.35940/ijitee.F1284.0486S419 

Definition 2.9: An ideal P in a ternarysemigroup T is 

called a prime radicalideal if β(P) = P. 

Prime radicalideal simply called as a radicalideal. 

Proposition 2.10: The consecutive conditions in an ideal P 

of a ternarysemigroup T are identical: 

(a) β(P) = P 

(b) x2n+1 ∈ P ⇒ x ∈ P, where n ∈Z and n ≥ 0.  

Proof: (a) ⇒ (b). Let x2n+1 ∈ P then by above Proposition 

2.7, x ∈ β(P) = P ⇒ x ∈ P.  

(b) ⇒ (a). We  have P ⊆ β(P). Let t ∈ β(P). Then by  above 

Proposition 2.5 ∃ an integer n ≥ 0 ∋ t2n+1 ∈ P. Hence by (b)  

t ∈ P. Hence β(P) ⊆ P. Therefore β(P) = P. 

Theorem 2.11: In a ternarysemigroup intersection of any

 set  of radicalideals is  a radicalideal. 

Proof: Let T be a ternarysemigroup and {Si/i ∈  } be any 

set of radicalideals in T. Then by above definition 2.9, β(Si) = 

Si.  Now  ∩Si ⊆ Si  ∀ i ∈   . So by above proposition 2.3 (c), 

β(

i

iS

) ⊆ Si ∀ i ∈  . Therefore β(

i

iS

 ) ⊆ 

i

iS

 ∀ i∈A.  

Again 

i

iS

 ⊆ β(

i

iS

) (by proposition 2.3(a)). Therefore β(


i

iS

) = 

i

iS

 ∀ i≤ i∈ .  Hence 

i

iS

 is a radicalideal 

Definition 2.12: Let T is a ternarysemigroup with a 

subsemigroup P and for an ideal I, A = I ∩P is an ideal. If 

there is  some other ideal  J ∈ T ∋ I ⊆ J and A = J ∩P  then we 

say that I can be extended to an ideal in T which will also 

contracts to A. 

Theorem 2.13: Suppose P be an m-system and N be an 

ideal of a ternarysemigroup T ∋ N ∩ P = ∅. Then ∃  a 

maximalideal M of T contained N ∋M ∩ P = ∅.  Further, M is 

a primeideal of T. 

Theorem 2.14: Let T be a commutative ternarysemigroup 

and P be a ternary subsemigroup of T. Let I be a radicalideal 

of T ∋ xyz ∈ I, x ∈ P; y,z ∈ T implies that  either x ∈ I or y ∈ 

I or z ∈ I. Then A = I ∩ P is a primeideal in P. Moreover  I can 

be declared as an intersection of primeideals each of which 

contradicts to A. 

Proof & Results: Suppose  x,y,z ∈ P ∋ xyz ∈ A. Then xyz 

∈ I. Therefore by  our assumption either x ∈ I or y ∈ I or z ∈ I.  

Thus either x ∈ A or y ∈ A or z ∈ A. So  A  becomes a 

primeideal. Put X = {J : J is a primeideal of T with J ⊇ I and J 

∩ P = A}. Then I ⊆ X. Now we prove X ⊆ I. Let x ∉ I. Then 

the m-system m = {y}∪{dy2n/d ∈ P but d ∉ A and n ∈Z+ }  

and m∩I=ø . Then by proposition 2.13 ∃ a maximalideal B ⊇ 

I with B ∩ M = φ which is again  prime. 

Then A ⊆ B∩P. Again for b ∈ B∩P, by2 ∈ B; B  is an ideal 

of T. It follows that by2 ∉ M.  This is together with the 

definition of M and b ∈ P implies that b ∈ A. Therefore B ∩ P 

⊆ A. Hence  A = B ∩ P. Again y ∉ B as y ∈ M and M ∩ B = 

φ. Therefore    y ∉ X and X ⊆ I. Hence I = X. 

Definition 2.15: Let T be a ternarysemigroup and  P ⊆ T 

for some P .  Let {P}  be the radicalideal generated by P  and 

is defined as the intersection of all radicalideals of T  such 

that each ideal contains P. Clearly {P} is the smallest 

radicalideal that contains P. We denote {P,x} as {P ∪{x}}. 

Theorem 2.16: In a commutative ternarysemigroup T 

satisfying ascending chain condition on radicalideal can be  

expressed as the finite intersection of  primeideals. 

Proof: Let T be a commutative ternarysemigroup 

satisfying ascending chain condition on  radicalideals. Put R 

is the set of all radicalideals which cannot be expressed as the 

finite   intersection  primeideals and R ≠ ∅. T satisfies 

ascending chain condition on radicalideals, R has a maximal 

element say I. Since I ∈ R and it cannot be expressed as the 

finite intersection  of primeideals, i.e I is not prime. 

Therefore ∃  x,y,z ∈ S ∋ xyz ∈ I but x ∉ I,y ∉ I,z ∉ I. 

Then each of the radicalideals {I,x},{I,y},{I,z}  ⊇ I. 

Therefore each of them  can be expressed as the  finite 

intersection of   primeideals in T. 

Now {I,x},{I,y},{I,z}⊆ I,{xyz}⊆ I. For any b 

∈{I,x}∩{I,y}∩{I,z}, b3 ∈ I ⇒ b ∈ I as I is a radicalideal. So 

{I,x}∩{I,y};{I,z}⊆ I. Clearly I ⊆{I,x}∩ {I,y}∩{I,z}. 

Therefore I = {I,x}∩{I,y}∩{I,z}. Hence I can be expressed 

as the finite intersection of primeideals, which is a 

contradiction. Therefore R = ∅. Hence the proof.  
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