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Abstract—In this article we design a measurement matrix 

based on compressive sensing for a medical image in order to 

achieve a low-cost medical image. In Compressive Sensing based 

reconstruction of an image, number of samples is smaller than 

conventional Nyquist theorem suggests. In this paper firstly, we 

apply DWT(Discrete Wavelet Transform)/DCT(Discrete Cosine 

Transform) transformations on medical image, and then we use 

Gaussian random matrices, Bernoulli random matrices, Partial 

orthogonal random matrices, Partial Hadamard matrices, 

Toeplitz matrices, and QC_LDPC matrices for medical images, 

respectively. The compressed medical images are reconstructed 

with different matching pursuit algorithms: OMP (Orthogonal 

Matching Pursuit), L1 algorithm and GBP (Greedy Basis 

Pursuit). Using the same amount of measurement, we select the 

matrix with the best reconstruction as a measurement matrix for 

medical images. The reconstruction PSNR values, SSIM values, 

CR values and reconstruction time were used to compare 

experimental results. The visual quality of reconstructed medical 

images is of prime importance for medical images. According to 

the experiment results, the visual quality of reconstructed 

medical images with OMP matching pursuit and DWT transform 

is better than other algorithms so that this paper selects Partial 

Hadamard matrices with DWT transformation and OMP 

matching pursuit as medical image measurement matrix. 

Keywords—compressive sensing, medical imaging, 

measurement matrices, recovery algorithm 

I. INTRODUCTION 

Nyquist Sampling Theorem states that “the frequency of 

sampling signal should be at least twice the signal 

bandwidth to reconstruct the signal completely”. There are 

four steps in Traditional methods for sampling of signal or 

images as: sampling of data, compression of sampled data, 

transmission, and reconstruction as described in Figure 1. 

But, the sampling frequency in the digital image processing 

and video processing systems is too high in order that the 

bandwidth requirement to transmit the signal is also high 

and it takes too much processing time with conventional 

signal sampling process. In Compressive sensing (CS), we 

can reconstruct the image with fewer measurement samples 

and good visual quality. The signal sampling method based 

on CS is as shown in Figure 2.  
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traditional method of signal sampling 

 
Fig.2 Sampling method for signal reconstruction 

 

Theoretical studies show that if we ignore the samples 

with lower mount of information and select the samples with 

higher amount of information, then the original signal can 

be reconstructed with small number of samples [10]. The 

measurement matrix must satisfy the condition of RIP or 

incoherence for the reconstruction of the original signal. 

In this paper, we use CS for medical image reconstruction 

to improve the speed and efficiency of compression of an 

image. The matrix that satisfies the condition of RIP or 

incoherence is chosen as medical image measurement 

matrix which may scale back the cost of data acquisition and 

transmission. The selection of measurement matrix are 

tested on various medical imaging and performance of 

Hadamard matrix with Discrete wavelet transform 

techniques improves the overall performance of 

compressive sensing based medical image reconstruction. In 

this proposed analysis we have tested various measurement 

matrices along with DCT and DWT for sparsity .It is also 

analyzed with three kind of measurement persuits like OMP, 

L1 and Gradient based Peruits .The block diagram of 

proposed work is shown in Figure 3.The overall system of 

compressive sensing based medical image reconstruction are 

measured as four different measuring parameters like Peak 

Signal to Noise Ratio(PSNR) and Encoding time. 

In section II we have discussed basic of compressive 

sensing, section III covers measurement matrices and 

section IV for result discussion and final section V conclude 

the result analysis and some future aspect of selection of 

measurement matrices. 

Selection Criteria of Measurement Matrix for 

Compressive Sensing Based Medical Image 

Reconstruction 
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Figure 1 block diagram of proposed work 

II. BASIC THEORATICAL ANALYSIS 

In compressive sensing sampling and compression is a 

single step measuring samples in which the maximum value 

about the signal and removing samples that have minimal 

value. For this, CS relies on two principles: sparsity and 

incoherence.  

Sparsity can be defined as the “information rate” of a 

signal can be much lower than that suggested by the Nyquist 

theorem. When the base is selected correctly; many 

projection coefficients are not possible. The signal only with 

non-zero coefficients is called as s-Sparse. 

Many natural signals are sparse so that they can be 

represented with small number of samples when expressed 

in the proper basis Ψ.  

Mathematically speaking, we have a vector f € Rn which 

is expanded in an orthonormal basis Ψ = [Ψ1 Ψ2 Ψ3.... Ψn] as 

follows:  

∅(𝜏) =  ∑ 𝑥𝑖𝛹𝑖(𝑡)𝑣
𝑡=1  (1) 

Where x is the sequence of coefficient of f, xi = < 𝑓, 𝛹𝑖 >. 

We can express f as Ψx. When a signal has a sparse 

expansion, we can ignore the coefficients with small number 

of information without much loss.  

If f is sparse probably the classified magnitudes of the (fi) 

decay quickly, then f is similar to fS and, therefore, the error 

||x − xS||l2 is small. We can ignore many samples with low 

amount of without much loss.  

Incoherence: The maximum correlation between any two 

elements of two different matrices is called as the 

Coherence. These two matrices can be of two different 

representation domains. If A is a n x n matrix with A1, A2 

,…., An as columns and B is an m x n matrix with B1 B2 .... 

Bn number of rows. Then coherence µ is defined as:  

 

∞(𝐴, 𝐵) = ѵ ∗ µαξ|Bĸ, AΨ|  

for 1≤ j ≤ n 

1 ≤ k ≤ m 

 

It follows from linear algebra that:  

1 ≤∝ (𝐵, 𝐴) ≤ √𝑛 

 

In the CS, low coherence between B and A converts into 

fewer samples required for reconstruction of signal. 

Incoherence increases the duality between time and 

frequency. 

The linear measurement process is the basic of 

compressed sensing, set X(n) as the original signal with N 

length, X(n) multiplied by the measurement matrix ф gets 

Y(m) with M length (M<N). The measurement process is 

defined as y=Ѳs, and Ѳ = Φψ (M*N), which is called the 

sensing matrix, the process is shown in figure 4.[8] 

 

 
Figure 2 compressed sensing process[8] 

 

There are three aspects of compressed sensing theory: 

sparse representation of signal, construction of measurement 

matrix and reconstruction of signal. 

A. Sparse representation of signal 

For sparse representation of image/signal we use a small 

number of bits by removing the coefficients which are zero 

or near zero and considering coefficients which carries large 

amount of information of the image. The necessary 

condition for the CS theory is sparsity of the signal.  

Sparse vectors can be defined mathematically as: 

Transform coefficient vector of signal a in orthogonal basis 

of ψ is Ѳ=ψT a, for 0<A<2 and B>0, these coefficient vector 

satisfies Eq. (1).[1] 

    (4) 

The Eq. (4) shows that the coefficient vector is sparse, 

and θ is the coefficient [2]. The discrete cosine transform, 

fast Fourier transform, discrete wavelet transform, curvelet 

transform and Gabor transform are generally used sparse 

transformation. The discrete wavelet transform and discrete 

cosine transform are used as sparse transformations for an 

image in this paper. 

1. Discrete Wavelet Transform (DWT): 

By using two unidimensional low pass and high pass 

filters we can change the rows of images. The filtered output 

is reduced to below two factors. By using the same filters 

the sub-sampled filtered image is transformed column by 

column using the same filters, then by a decimation step 

resulting in four decompositions: LL (Low Pass Low), LH 

(Low Pass Low), HL Low Pass) and HH (High Pass High 

Pass). The wavelet transform consists of a cascade of low-

pass and high-pass filters, generating an approximation 

signal. 

2. Discrete Cosine Transform (DCT): 

The discrete cosine transform (DCT) represents an image 

as a sum of sinusoids of varying magnitudes and 

frequencies. In DCT, for a typical image, most of the 

visually significant information about the image is collected  
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in a few coefficients of the DCT; these appear in the upper 

left corner of the DCT Horizontal frequencies increase from 

left to right, and vertical frequencies increase from top to 

bottom. The constant-valued basis function at the upper left 

is often called the DC basis function, and the corresponding 

DCT coefficient B00 is often called the DC coefficient. This 

will create problems in image processing.  

The One-Dimensional DCT: The definition of DCT for a 

1-D sequence of length N is  

𝑋(𝑉) =  ∑ ∅(𝜉)𝑥𝜎𝜖(2𝜉 + 1)𝜐
2𝑁⁄𝑁−1

𝜉=𝜎  

for u = 0,1, 2, …., N −1. 

Similarly, the inverse DCT is defined as  

𝜙(𝜉) =  ∑ 𝑥(𝜐)𝜒𝜎𝜖(2𝜉 + 1)𝜐
2𝑁⁄𝑁−1

𝜐=𝜎  

for x = 0,1, 2, …, N −1. where α(u) is defined as  

 

𝛼(𝜇) = {
√1/N, u =  0 

2/N, u ≠ 0
   (7) 

 

Two Dimensional DCT: Two dimensional DCT is given 

as,  

𝐶(𝑢)  =  𝛼(𝑢)𝛼(𝑣) ∑ 𝑓(𝑥, 𝑦)𝑐𝑜𝑠П(2𝑥 + 1) 𝑢/𝑁−1
𝑦=0

2𝑁𝑐𝑜𝑠П(2𝑦 + 1) 𝑣/2𝑁   (8) 

for u, v = 0,1, 2, …, N −1 and α(u) and α(v) are defined in 

(7)  

Inverse of 2D DCT is given by,  

𝑓(𝑢)  =  𝛼(𝑢)𝛼(𝑣) ∑ 𝐶(𝑢, 𝑣)𝑐𝑜𝑠П(2𝑥 + 1) 𝑢/𝑁−1
𝑦=1

2𝑁𝑐𝑜𝑠П(2𝑦 + 1) 𝑦/2𝑁     (9) 

for x, y = 0,1, 2, …, N −1.  

If the lower right values represent higher frequencies and 

are often small enough to be neglected with little visible 

distortion then compression is achieved.  

B. Reconstruction algorithm: 

In Reconstruction algorithm the sparse signal p(n) of 

length N is reconstructed with the measure vector q(m) of 

length M (M<N). The reconstruction of signal is done by 

finding the solution of the L0 minimization problem, as 

shown in Eq. (10).  

𝛼𝑖 =   𝛷𝑖𝑇 ∗  𝑟𝑛−1
     (10) 

In this paper we use the orthogonal matching pursuit 

algorithm (OMP) [5], L1 norm method and GBP(Greedy 

Basis Pursuit) method and algorithms for them are as 

follow. 

1. OMP (Orthogonal Matching Pursuit): 

OMP is one of the greedy algorithms. Greedy algorithm 

uses an iterative approach to get an approximate increase of 

sparse signal in each iteration, by calculating the measured 

data mismatch. This continues when the coefficient signal 

reached the desired signal convergence. OMP does the 

signal recovery quickly with a simple algorithm. The 

algorithm begins by looking for columns that have the 

greatest relevance to the measurement. The residual signal 

will be obtained by subtracting the estimated contribution to 

the vector signal measurements. Repeat these steps to see 

the correlation between the columns with the residual signal.  

To reconstruct the ideal signal x, we need to determine 

column ϕ which is measurement matrix used for taking 

measurement y. In this algorithm we choose columns in 

greedy fashion. At each iteration, choose column ϕ which is 

highly correlated with the residual part of y. Then 

corresponding estimation of x calculated as reducing the 

resulting residue. After s iteration, algorithm will identify 

the right values. The algorithm of OMP is as shown below: 

• Measurement matrix ϕ of m x n, Y of mx1  

• s is sparsity level. 

• Initialize the residual r0= Y, the set of indices, Ƭ0 = Φ 

and the approximation X0=0.  

• Find the most correlated column of Ф with the residual: 

𝑖𝑚𝑎𝑥 =  𝑎𝑟𝑔𝑚𝑎𝑥 |𝛼𝑖|                    (11) 

Ƭ𝑛 = Ƭ𝑛−1 ∗ 𝑈𝑖𝑚𝑎𝑥                      (12) 

𝑋 = 𝑎𝑟𝑔𝑚𝑖𝑛||𝑌 − 𝛷 𝑇𝑛𝑋𝑇𝑛||2                     (13) 

• To obtain the new estimated signal solve the problem of 

least squares. 

𝑟𝑛  = 𝑌 − 𝛷 𝑋                         (14) 

• Calculate the residual 

𝑟𝑛  = 𝑌 − 𝛷 𝑋                          (15) 

• The algorithm stops after s iterations. 

The flow of OMP method is shown in Figure 5. 

1. L1 minimization: 

One type of recovery is norm minimization technique or 

basic pursuit. In this technique all the available 

measurement values considered as set of linear equations. 

l0- minimization technique has drawback of NP (Non-

deterministic polynomial-time hard) hard problem.  

So, we go with recovery algorithm l1-norm minimization 

(Sum of Absolute Difference); the reconstruction x* is 

defined as x*= Ψ f*, where f* is the solution of the convex 

optimization program 

 (16) 

That is, among all objects 𝑓= ψ𝑥̃ consistent with the data, 

select only whose coefficient sequence has minimal l1 norm. 

The linear programming with linear equality constraints are 

considered in this algorithm [15]. The CS theory uses L1 

norm characteristics due to its easy computation, thus 

offering a far simpler and faster way of estimating sparse 

signals from very limited number of measurements. 
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Figure 3 Flow graph of OMP algorithm 

 

 

2. Greedy Basis Pursuit 

The GBP algorithm takes x ɛ Rd as input signal and an 

over complete dictionary S={ψi}i=1
n, where n>d and ∀𝑖 , 𝛹𝑖 ∈

𝑅𝑑  𝑎𝑛𝑑 ||𝛹𝑖||2 = 1, and output signal x is represented as a 

set of indices 𝐼 ⊆ {1, ⋯ , n} and a equivalent set of 

coefficients A={αi}i=1 Such that x=Ʃi=1αiψi. 

The GBP algorithm searches the side of conv(D) that 

intersects x, which is called as Fx. In GBP hyperplanes 

sequences, H(0), H(1), H(2), …,supporting conv(D) is 

constructed. A set of indices I(t) and a set of coefficients A(t) 

is maintained at each iteration, defining an approximation to 

x: 𝑥̌𝑡 = ∑ ∝𝑖 𝛹𝑖𝑖∈𝐼(𝑡) and a normal vector n(t). The current 

hyperplane H(t) is defined to have normal n(t) and contain the 

set {𝛹𝑖}𝑖∈𝐼(𝑡). Each consecutive hyperplane H(t+1) is a 

rotation of the current hyperplane H(t) determined by 𝑥̌(𝑡). 

The algorithm stops when H(t) contains Fx so that 𝑥̌(𝑡) =
𝑥.[14] 

C. Construction of measurement matrix: 

The measurement matrix should satisfy the RIP or the 

incoherence. The classification of measurement matrices is 

as shown in the Fig .6[6]. We use two random unstructured 

matrices, one random structured matrix, one semi 

deterministic and one full deterministic matrix.  

 

 
Figure 4 classification of measurement matrices[6] 

1. Random Gaussian matrix: 

The elements of a Random Gaussian matrix are 

independent and normally distributed with expectation 0 and 

variance 𝜎2. The probability density function of a normal 

distribution is:  

𝑘 ≤  𝐶1𝑁𝑙𝑜𝑔 (𝐿 /𝑆) +  𝐶2 𝑙𝑜𝑔ɛ − 1              (17) 

Where 𝜇 is the mean of the distribution and 𝜎 is the 

standard deviation. The RIP condition is satisfied with 

probability of minimum 1 − ε given that the sparsity satisfy 

the following formula: 

𝑘 ≤  𝐶1𝑁𝑙𝑜𝑔 (𝐿 /𝑆) +  𝐶2 𝑙𝑜𝑔ɛ − 1               (18) 

Where S is the sparsity of the signal, N is the number of 

measurements of the signal, and L is the length of the sparse 

signal.[6] 

2. Random Bernoulli matrix: 

A random Bernoulli matrix B 𝜖ℝ𝑀×𝑁 has element values 

as +1/ √𝑀 or −1 /√𝑀 with equal probabilities. There is two 

possible outcomes n=0 and n=1 with equal probabilities of 

p=1/2 and q=1-p=1/2 respecticely. Thus, the probability 

density function is: 

𝑓(𝑛) =  {
1/ 2  ;  𝑓𝑜𝑟 𝑛 =  0 
1/ 2   ;  𝑓𝑜𝑟 𝑛 =  1

            (19) 

The RIP condition is satisfoed with the probability which 

is same as the Random Gaussian matrix.[6] 

3. Partial Orthogonal Random Matrices: 

If square matrix X of order N meets X𝑇X=𝐸, X is named 

orthogonal matrix. To construct Partial Orthogonal 

measurement first we generate orthogonal matrix 𝑇 of 

dimension N*N, and then we tend to at random choose 𝑀 

rows from 𝑇, construct the 𝑀∗𝑁 matrix, and unite the 𝑁 

columns. [7] 

4. Random Partial Hadamard matrix: 

The elements of Hadamard measurement matrix are 1 and 

-1, The columns of which orthogonal. If the transpose of the 

matrix H(𝐻𝑇) of order n is closely related to its inverse then 

matrix H is said to be a Hadamard matrix.. This can be 

expressed by: 

𝐻𝐻𝑇  =  𝑁𝐼𝑁                                 (20) 

Where 𝐼𝑁 is the identity matrix of size 𝑁 × 𝑁. The RIP 

condition is satisfied with probability a minimum of 1 − 5 𝑁 

− 𝑒−𝛽 ⁄ provided 𝑀 ≥ 𝐶0(1 + 𝛽)𝐾log𝑁 where 𝛽 and 𝐶0 are 

positive constants, K is the sparsity of the signal, N is its 

length and M is the number of measurements [6]. 

5. Toeplitz Matrix: 

The Toeplitz matrix 𝑇𝜖S𝑁×𝑁, which is related to a vector 𝑡 

= (𝑡1,2,…𝑡𝑛)𝜖S𝑁 whose (𝑖,𝑗) − 𝑡S element is given by: 

𝑇𝑖𝑗 =  𝑡𝑗 − 𝑖                            (21) 

Where 𝑖, = 1,2,…,𝑁. The Toeplitz matrix diagonal are 

constant i.e. 𝑇𝑖𝑗 = 𝑇𝑖+1 𝑗+1. Thus, the Toeplitz matrix has the 

following form:  

𝑇 = [

𝑡𝑛 𝑡𝑛−1 … 𝑡1

𝑡𝑛+1

⋮
𝑡2𝑛−1

𝑡𝑛

⋮
𝑡2𝑛−2

… 𝑡2

… ⋮
… 𝑡𝑛

]                    (22) 

If we have a randomly selected subset 𝑆 ⊂ {1,…, 𝑁} of 

multiplicity 𝑀 ≤ 𝑁, the RIP satisfies 𝛿𝑘 ≤ 𝛿 with a high 

probability provided:  

𝑁 ≥  𝐶𝛿𝐾2 𝑙𝑜𝑔𝑁/ 𝐾                      (23) 

Where 𝐾 is the sparsity of the signal and 𝑁 is its length 

[6]. 

6 QC-LDPC Matrix: 

The QC-LDPC with parity check matrix is predicted on 

cyclic shift matrices, that are 

made of identity matrix[9]. 

The parity check matrix of 
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order of m*n of QC-LDPC can be written as 

𝐻 = [

𝐼(𝑆11) 𝐼(𝑆12) … 𝐼(𝑆1𝑛)
𝐼(𝑆21)

⋮
𝐼(𝑆𝑚1)

𝐼(𝑆22)
⋮

𝐼(𝑆𝑚1)

… 𝐼(𝑆2𝑛)
… ⋮

… 𝐼(𝑆𝑚𝑛)

]                    (24) 

The algorithm for proposed work is as follow: 

i. Perform the transform of the N*N image.  

ii. Use the measurement matrix to measure the 

transformed image.  

iii. Find out prediction error for all components.  

iv. At receiver side, do prediction on received values.  

v. Use the reconstruction algorithm to reconstruct the 

image.  

vi. Apply inverse transform to reconstruct the image.  

vii. The image reconstructed will be verified by its PSNR 

value, SSIM value, CR value and reconstruction 

time. 

III. RESULT 

For experiment we select a medical image of dimension 

256 ∗ 256. We use MATLAB 2014a for simulation. The 

original medical image is measured with random Gaussian 

measurement matrix, Bernoulli random matrices, Partial 

Orthogonal random matrices, Partial Hadamard matrices, 

Toeplitz matrices, and QC-LDPC matrices. The measured 

medical image is reconstructed by the OMP, L1 and GBP 

algorithm.  

Figure 9-12 show scatter diagram of PSNR and time for 6 

different measurement matrices used to measure the medical 

images. From the scatter diagrams we can see that 

Hadamard matrix has highest PSNR values compared to 

others in all the cases excepting the L1_DWT. The PSNR 

value for the OMP_DCT_hadamard is 34.908 whereas the 

PSNR value for OMP_DWT_hadamard is infinite. 

 

 
Figure 5 OMP_DWT 

 

 
Figure 6 L1_DWT 
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Figure 7 GBP_DWT 

 

 
Figure 8 OMP_DCT 

 

 
Figure 9 L1_DCT 
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Figure 10 GBP_DCT 

 

 
Figure 15 (a) PSNR comparison 

 

The reconstructed PSNR(peak signal to noise ratio) 

values, SSIM(structural similarity index measurement) 

values, CR(compression ratio) values and reconstruction 

time were used to compare the simulation results. Figures 15 

show PSNR, SSIM, CR and reconstruction time bar chart 

diagrams for 6 different measurement matrices used with 

different recovery algorithms to reconstruct the medical 

image. 

 

 
Figure 15(b) SSIM comparison 

 

 
Figure 15(c) CR comparison 
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Figure 15(d) Reconstruction Time comparison 

 

  
Figure 16 (a) Original image Figure 16 (b) Output image 

of OMP_DWT_hadamard 

 

  
Figure 11 (a) original image Figure 17 (b) Output image 

Of OMP_DWT_hadamard 

IV. CONCLUSION 

In this paper firstly, we applies DWT/DCT on medical 

image as sparse transformation, and then we applies 

Gaussian random matrices, Bernoulli random matrices, 

Partial Orthogonal random matrices, Partial Hadamard 

matrices, QC-LDPC matrices and Toeplitz as measurement 

matrices. The OMP, L1 minimization and GBP algorithms 

are used as reconstruction algorithms. We selects Partial 

Hadamard matrices as medical image measurement matrix 

with OMP reconstruction algortithm and DWT 

transformation. Because the visual quality of reconstructed 

images is of prime importance for medical images and this 

combination gives the better visual quality compared to 

others. This measurement matrix is used to compress 

medical image and to reduce medical image sampling and 

transport cost. 
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