
International Journal of Innovative Technology and Exploring Engineering (IJITEE)
ISSN: 2278-3075 (Online), Volume-8 Issue-12, October 2019

5406

Published By:
Blue Eyes Intelligence Engineering &
Sciences Publication

Retrieval Number: L37891081219/2019©BEIESP
DOI:10.35940/ijitee.L3789.1081219
Journal Website: www.ijitee.org



Abstract: Mutation testing is one of the oldest and unique
testing techniques to perform white box testing of software
applications. Code coverage becoming an increasing concern in
the testing cycle of software, mutation testing technique aids in
achieving higher code coverage and unearthing more number of
errors at the testing site itself. The parameters like the database
connectivity, session management, cookie management, are the
beginning point of web application testing failures given the
heterogeneity aspects associated with the development of a web
application. A detailed account on list of available testing tools
for performing mutation testing are presented here. A big bundle
of mutation testing tools are still available, however they are not
focussing on some of the crucial web vulnerabilities like session
and cookie management in web apps. In the current work, a tool
to perform mutation testing of web applications is developed and
tested to see if desired results are occurring. An architecture of
the tool is designed is discussed and presented. A brief analysis
on results is presented.

Key Words: mutation testing, automated testing tool, web
application testing

I. INTRODUCTION

Web Applications are growing in tandem with the entire
e-commerce giant leaping up exponentially every
day[1][17]. A large amount of customer retention happens
with the credibility of the web application in use. And hence
a proper testing is the need of the day when especially small
to medium to large businesses are banking on a web
application for growing in their business. Typically a web
application also has grown from mere information presenting
lopsided html pages to a more dynamic software where
information flows through between the clients and the server.
The incredible discriminating features of a web app from
regular software are what make them unusual for the regular
kind of testing. Mutation testing, the other negative testing
finds an interesting space when it comes to digging the
deeper overlooked faults made unknowingly by the
developers who end up fixing those vulnerabilities at a
whopping cost much later[15].

Revised Manuscript Received on October 30, 2019.
* Correspondence Author

S. Suguna Mallika*, CSE, CVR College of Engineering, Hyderabad,
India. Email: suguna.kishore@gmail.com

Dr. D. Rajya Lakshmi, CSE, JNTU-UCEN, Narsaraopet, Guntur,
India. Email: rajyalakshmi.cse@jntukucev.ac.in

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the
CC-BY-NC-ND license http://creativecommons.org/licenses/by-nc-nd/4.0/

The idea of mutation testing is to seed in buggy code at
known points in the original source file and test it against the
regular test suite. If the software thwarts the buggy code and
gives a wrong output, then the mutant is said to be killed and
there is a strong test case, nevertheless assuring a secure
software. However, if the software were to render results
exactly the same way like the original code overlooking the
faulty code, then there are two things to be ascertained. One
is to enhance the test input sample size and check to see if the
mutant is overthrown. If the mutant still persists then there is
a need to increase the test suite with a new test case and a
backward tracing of the faulty code's abnormal behavior till
the actual bug is unearthed.
 Usually for performing mutation testing of a software,
there need to be some mutation operators which serve as
appropriate changes in the source code and then the faulty
software is tested either manually or through any automated
tool. There needs to be some metric to evaluate the
effectiveness of the mutation test suite that was applied on
the software. However, previous works reveal that mutation
operators were not proposed in every vulnerable area of web
applications though.

II. LITERATURE SURVEY

The web applications with their heterogeneous nature
have many vulnerabilities like cross site scripting[7], broken
session management and authentication[16], application
logic failures, database connectivity problems, cross browser
compatibility[3][8] are some of the worst security related
vulnerabilities that dynamic web applications often succumb
to while in execution. There are tools to perform load testing
and performance testing of web apps but there are not many
tools which test all the heterogeneity aspects mentioned
afore. In this work, an automated testing tool to perform
mutation testing of javascript based web applications is
presented. Novelty of this tool lies in its ability to implement
mutation operators so far not defined in any of the previous
mutation testing works.

There are quite a number of tools for performing mutation
testing on various stand alone applications. Tools like
MuClipse, PIT, Jumble perform mutation testing on Java
based stand alone applications and tools like Mutpy and
Cosmic Ray on stand alone python
programs[2][14][18][19][20].

MUTWEB- A Testing Tool for performing
Mutation Testing of Java and Servlet Based Web

Applications

S. Suguna Mallika, D. Rajya Lakshmi

mailto:suguna.kishore@gmail.com
mailto:rajyalakshmi.cse@jntukucev.ac.in
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijitee.L3789.1081219&domain=www.ijitee.org

MUTWEB- A Testing Tool for performing Mutation Testing of Java and Servlet Based Web Applications

5407

Published By:
Blue Eyes Intelligence Engineering &
Sciences Publication

Retrieval Number: L37891081219/2019©BEIESP
DOI:10.35940/ijitee.L3789.1081219
Journal Website: www.ijitee.org

However, the number of tools offering mutation based
testing to web apps are quite few like WebMuJava,
Selenium, HP–QTP, FitNesse, Watir, testComplete,
LoadRunner, TestNg, TOSCA, SilkTest,
WinRunner[4][5][9][10][11][12][13].

A review of some of the automated testing tools and the
type of testing supported by the tools led the survey to some
interesting facts that there are not many tools available for
testing the non-functional requirements of the web
applications like security, performance, availability etc.
Most tools focused on testing the functional requirements
which otherwise could be brought down to the unit level
testing.

MuClipse Tool offers different mutation operators to the
tester who can choose from the list provided on the User
Interface for launching corresponding test cases. The test
cases are run using JUnit and tool displays a mutation score
at the end of testing[24].

Jumble and PIT tool is a mutation based testing tools
which performs mutation at byte code level[21][23].
Cosmic-ray, Mutpy are mutation testing tools for python

based web applications[20][22]. WebMuJava is a mutation
testing tool for web applications. It tests mutation operators
over web applications with vulnerabilities in link transitions,
state management etc[16].

III. ARCHITECTURE OF TOOL

In this work, an automated testing tool named MUTWEB
is developed and used for mutation testing of 5 sample open
source web apps. Tools architecture is as presented in Fig.1.
There is a presentation layer which facilitates selection of
operators, a canonical layer which mutates the original code
to pieces of mutants and the logic layer which analyses the
results and writes log files for the tester’s understanding of

the results. Further efforts are underway to feed the results of
the tool to a machine learning algorithm which analyses the
nature of defects and makes a prediction of defects in web
applications with precision.

Table-I: Various Testing Tools Currently Available
S.No Tool Name Type of Testing

Supported
Browser Support Language Supported Open Source/

Licensed

1 WATIR Functional Testing IE, Chrome, Safari,
Firefox

All Open source

2 Selenium Functional Testing IE, Chrome, Safari,
Firefox

Java, .NET, Ruby, Perl,
PHP

Open source

3 HP-QTP Functional Testing IE, Chrome, Safari,
Firefox

VB Script Licensed

4 Fitnesse Acceptance Testing N/A Java, Python, C#, Open source

5 testComplete Functional Testing, Unit
Testing

IE, Chrome, Safari,
Firefox

VBScript, Jscript,

Python, Delphi Script,
C++ script, C# Script

Licensed

6 Load Runner Load Testing Chrome, Safari, IE,
Firefox

Java, .NET, JavaScript,

HTML scripting

Licensed

7 Test Ng Integration Testing,
Functional Testing,
End-End Testing, Unit
Testing

N/A Java Open source

8 TOSCA Functional Testing IE, Firefox, Chrome Delphi, .NET including
WPF, Java,
swing/SWT/AWT, VB

Licensed

9 SilkTest Functional Testing IE, Firefox .NET, Java, Swing,
SWT, DOM

Licensed

10 WinRunner Functional Testing Any Browser Any web based
application

Licensed

International Journal of Innovative Technology and Exploring Engineering (IJITEE)
ISSN: 2278-3075 (Online), Volume-8 Issue-12, October 2019

5408

Published By:
Blue Eyes Intelligence Engineering &
Sciences Publication

Retrieval Number: L37891081219/2019©BEIESP
DOI:10.35940/ijitee.L3789.1081219
Journal Website: www.ijitee.org

S.No Tool Name Type of Testing
Supported

Browser Support Language Supported Open Source/

Licensed

11 ApacheJMeter Performance Testing,
Load Testing

Any Browser web service Open source

12 NeoLoad Load Testing IE, Firefox, Chrome ASP, .Net, J2EE, PHP Licensed

13 LoadUI Load Testing Any Browser Any web based
application

Licensed

14 WebLoad Load Testing IE, Firefox, Chrome HTTP/HTTPS (SSL,
TLS), WebSocket,
PUSH, AJAX, SOAP,
HTML5, WebDAV and
others.

Licensed

15 WAPT Load Testing, Stress
Testing

IE, Firefox, Chrome
and others

Java Script Licensed

16 Rational
Performance
Tester

Performance Testing Any Browser Any Script, XSS, SOAP Licensed

17 Testing Anywhere Functional Testing IE, Firefox, Chrome Any Web Based
Application

Licensed

18 Qengine Functional Testing IE, Mozilla, Firefox VBScript, Jscript,
Python, Delphi Script,
C++ Script, C# Script

Licensed(but
End- of Sale)
announced

19 MUTANDIS Functional Testing Any browser Java Script Open source

20 ATUSA Functional Testing Any browser Ajax based any script
crawling

Open source

21 Crawljax Navigation Testing Any browser Ajax based any script
crawling

Open source

22 JSART Regression Testing Any Browser Java Script based any
web application

Open source

23 webMate Regression Layout
Testing

IE, Firefox, Chrome
and others

VBScript, Jscript,
Python, Delphi Script,
C++ Script, C# Script

Licensed

24 reAjax Functional Testing Mozilla, Firefox Ajax based scripts Open source

25 WebVizor Functional Testing Any browser Any Language Open source

26 Web Portal In
Container Testing

Integration Testing Any browser Any Script Open source

27 Veriweb Tool Navigation Testing Any browser JavaScript Open source

28 WebScarab Security Testing IE, Firefox, Chrome
and others

Any Script, XSS, SOAP Open source

29 Acunetix Security Testing,
Penetration Testing

Any browser Any Script, XSS, SOAP Licensed

30 Fortify Security Testing Any web browser C#,.NET, Java, ASP Licensed

MUTWEB- A Testing Tool for performing Mutation Testing of Java and Servlet Based Web Applications

5409

Published By:
Blue Eyes Intelligence Engineering &
Sciences Publication

Retrieval Number: L37891081219/2019©BEIESP
DOI:10.35940/ijitee.L3789.1081219
Journal Website: www.ijitee.org

Fig. 1. Architecture of MUTWEB

IV. IMPLEMENTATION

The tool is deployed on apache tomcat server.
Initially, the web application under test should be placed in
the directory of the testing tool’s source code. The

MUTWEB’s web.xml is updated with the files of the
application. The main page of the application is executed.
Here, the file to be mutated is given as input and the mutation
operator is selected. Some operators require generation of
log file before mutation and a section for doing the above
process is provided. The log file generation code is inserted
into the file and the mutated application must be executed to
write log code into a log file. Then another section which also
takes input as a file name and type of operator is provided
which now applies mutation and modifies the logger code
inserted previously. Figure 3 shows the home page of the
MUTWEB tool which enables the tester to enter the filename
under test.
The application is executed again in order to generate
another log file. The file name and the type of operator
selected before and applying mutation must be the same.
After both the log files are generated, result analyzer
compares the contents of both log files is executed. And the
status of the mutant is displayed (Live or Dead). After this,
the contents of both the log files are cleared. Before mutation
is applied, a copy of that file is created and after executing
the log checking servlet, the contents of mutated file are
updated with its original contents.
 The mutation operators applied on the web applications
for testing using the current tool are presented in Table-II.

Table-II: Mutation Operators Implemented in MUTWEB

S.No. Name of
the
Operator

Description Category

1 DSID If a profile URL is tried to be accessed even after logging out of a web
application, the user information has to be inaccessible and be redirected to
login page again.

Incorrect
Session
Management

2 DACD Add Cookie Method Deletion - This operator simply deleted the cookie
method from the source code.

Incorrect Cookie
Management

3 DHBR HTTP Boolean Replacement- This will not throw any error but problems
might occur while validating the current session

Incorrect
Session
Management

4 DFIR Forward Include Replacement - This operator will replace 'forward' with
'include' and vice versa in the following code. But with respect to servlets this
operator has not been validated.

Incorrect
Session
Management

5 DRDUR Request Dispatcher URL Replacement- Modifying the URL in the code and
checking the result with the original code execution. Request Dispatcher
method has not been checked for in the previous works so far.

Incorrect
Session
Management

6 DCD Close Method Deletion – the conn.close() method is responsible for claiming
back the connection resources offered to the client. However if the
conn.close() method is removed then the resources continue to be in use
without being reallocated for a new connection thus impacting performance
of a web application as the number of users accessing it increases.

Incorrect
Session
Management

7 DSSR Sessions Set Attribute Name Replacement - Incorrect
Session
Management

International Journal of Innovative Technology and Exploring Engineering (IJITEE)
ISSN: 2278-3075 (Online), Volume-8 Issue-12, October 2019

5410

Published By:
Blue Eyes Intelligence Engineering &
Sciences Publication

Retrieval Number: L37891081219/2019©BEIESP
DOI:10.35940/ijitee.L3789.1081219
Journal Website: www.ijitee.org

8 DGSR Session Name Replacement – Replace the session name in the URL with
another previous or some random value and check to see if the contents of the
web application are still accessible.

Incorrect
Session
Management

9 DCDM Cookie Method Modification Incorrect Cookie
Management

10 BAR Basic Authentication Replacement Incorrect
Session
Management

11 AAR Advanced Authentication Replacement Incorrect
Session
Management

12 XSSC Cross Site Scripting Check Cross Site
Scripiting
Vulnerability

13 DRUR Modifying the URL- Modifying the Url in the code and checking the result
with the original code execution.
RequestDispatcherrd=request.getRequestDispatcher("Welcome.html");

Incorrect
Session
Management

14 DSGD Servlet based web application’s getAttribute function is deleted. Incorrect
Session
Management

A. User Interface

Fig. 2 presents the front page where the user is
provided with options to enter the filename for applying
mutation, selecting the type of mutation operator and option
to generate log file before and after mutation.

Fig. 2. Home Page of MUTWEB Tool

B. LoggerServlet

 This Servlet will get the information such as
filename and type of operator selected and will add some log
code related to the selected operator in the given filename.
However, this will not apply mutation but that log code is used
to generate a log file which is later used for comparison. After
applying log code, its redirected back to the input page. This
page will compare the contents of the two log files that are
generated and produce an output which tells whether the
mutant applied is live or dead. After checking the contents,
contents of both the log files are cleared and the mutated code
is replaced back with its original code.

Fig. 3 Invoking Result Analyzer for checking whether

mutant is live or dead.

The steps for generating log file, running a servlet

before applying mutation are not similar for all operators. For
example, before applying the DACD mutation operator, the
servlet under test is to be executed before applying mutation.
There is no need for applying a test which generated log file
before the mutation process. After applying this operator, two
log files are generated by the back-end code of DACD
operator. After applying this code, the updated servlet is run
again. Sample code for generation of log file when trying to
execute the DACD mutation operator is provided in Table-III.

C. Code Snippets

The code snippet in Table-III presents the sample mutated
code generated for the corresponding mutation operator
selected by the tester against the web application under test.
Similarly, other mutants also would get generated based on
operator selected.

MUTWEB- A Testing Tool for performing Mutation Testing of Java and Servlet Based Web Applications

5411

Published By:
Blue Eyes Intelligence Engineering &
Sciences Publication

Retrieval Number: L37891081219/2019©BEIESP
DOI:10.35940/ijitee.L3789.1081219
Journal Website: www.ijitee.org

Table-III: Sample Code Snippet

File log= new File(fn);
Pattern p = Pattern.compile("request.getSession.");
Matcher m1;
{
FileReaderfr = new FileReader(log);
String s;
String totalStr = "";
try (BufferedReaderbr = new BufferedReader(fr)) {
while ((s = br.readLine()) != null) { m1
= p.matcher(s);
if(!m1.find()){ totalStr
+= s;
totalStr += '\n';
}
else{
totalStr += "HttpSession session=request.getSession(true);";
totalStr += '\n';
}
}
FileWriterfw = new FileWriter(log);
fw.write(totalStr);
fw.close();

V. RESULT ANALYSIS

Upsorn and Offutt [16] tested their mutation operators on
15 open source web applications that are made available at
http://github.com/nanpj. To apply the proposed operators five
web applications were picked up in the current work, which
are servlet based and were subjected to mutation testing with
the proposed operators.

In the current work, web apps under testing are referred
to as experiments, where ei refers to ith experiment. For
testing the proposed operators by the authors, only 5
applications namely BSVoting, HLVoting, KSVoting,
Conversion and computeGPA are taken into consideration.
BSVoting, HLVoting and KSVoting are online voting
applications which allows a student to maintain and cast their
vote against other user’s votes. computeGPA is an application

which computes the grade point average of a particular
student by accepting their credit hours and grades for the
courses the students enrolled. Conversion is a simple webapp
which enables users to do online conversion of measurements
from one unit to another.

All these experiments are using features that include
session management, cookie management, authentication, etc
to test our proposed mutation operators. Table-IV lists the
experiments along with details of number of lines of code in

each web app under test and the total number of components
each web app is comprised of.

Table-IV: Subject web apps under Test

Subjects Components LOC
BSVoting(E1) 11 930
computeGPA(E2) 1 1619
HLVoting(E3) 12 939
KSVoting(E4) 7 1024
Conversion(E5) 1 388

Every mutation operator does a specific code change at
known points and the web application’s behavior is studied

after the inserted change. If the web app thwarted the change
done effectively with its exception handling codes imbibed
efficiently, then that particular mutant is killed. If not , we
have a susceptibility exposed.

A detailed break up of mutants generated and killed by web
mutation adequate tests is presented in Table-VII. The
operator wise summary of mutants killed by each of the web
mutation adequate tests is provided in Table -VIII.

 It is apparent that not all mutation operators help in
detecting faults in web apps, but some of them recommend
preferred web applications features for developing a better
web app and improve the standard of the application. For
instance, the experiments under investigation are not
employing cookies and suggest that the web developers
actually use cookies for better performance of their
application. Similarly, the experiments in investigation were
found to be using xml files to store and retrieve data instead of
a database in the backend. The authors are further exploring
other open source web applications which used database
connectivity to test some of the operators thereof.

Summary of mutants generated and killed by each and
every web app is presented in Table -V.

Table-V: Summary of mutants generated and killed by
web mutant adequate tests

Exp # Mutants Equivalent Killed Tests
E1 43 8 35 10
E2 14 6 8 4
E3 61 18 43 9
E4 54 18 36 10
E5 3 0 3 3
Moreover, the web applications in test, did not use a

backend database due to which the proposed operators could
not induce mutants into the code. The developers used xml
files for storing and retrieving data which affects the security
of the application as it is quite easy to edit the xml files by
gaining access to them.

Table-VI: Summary of mutants generated by Web Mutation Adequate Tests Operator Wise

Exp

Mutants Generated Total

D
S

ID

D
A

C
D

D
H

B
R

D
F

IR

D
R

D
U

R

D
C

D

D
S

S
R

D
G

S
R

D
C

D
M

B
A

R

A
A

R

X
S

S
C

D
R

U
R

D
S

G
D

D
P

R

D
P

D

D
D

N
R

D
L

D
R

D
S

S
D

E1 1 0 1 4 4 0 4 10 0 0 0 1 4 10 0 0 0 0 4 43
E2 1 0 0 0 0 0 6 0 0 0 0 1 0 0 0 0 0 0 6 14
E3 1 0 1 9 0 0 18 1 0 0 0 1 1 11 0 0 0 0 18 61
E4 1 0 1 6 7 0 11 1 0 0 0 1 7 8 0 0 0 0 11 54
E5 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 3

http://github.com/nanpj

International Journal of Innovative Technology and Exploring Engineering (IJITEE)
ISSN: 2278-3075 (Online), Volume-8 Issue-12, October 2019

5412

Published By:
Blue Eyes Intelligence Engineering &
Sciences Publication

Retrieval Number: L37891081219/2019©BEIESP
DOI:10.35940/ijitee.L3789.1081219
Journal Website: www.ijitee.org

Table –VII: Summary of mutants killed operator wise by web mutant adequate tests

Exp

Mutants Killed Total

D
S

ID

D
A

C
D

D
H

B
R

D
F

IR

D
R

D
U

R

D
C

D

D
S

S
R

D
G

S
R

D
C

D
M

B
A

R

A
A

R

X
S

S
C

D
R

U
R

D
S

G
D

D
P

R

D
P

D

D
D

N
R

D
L

D
R

D
S

S
D

E1 1 0 1 4 0 0 4 10 0 0 0 1 4 10 0 0 0 0 0 35
E2 1 0 0 0 0 0 6 0 0 0 0 1 0 0 0 0 0 0 0 8
E3 1 0 1 9 0 0 18 1 0 0 0 1 1 11 0 0 0 0 0 43
E4 1 0 1 6 7 0 11 1 0 0 0 1 0 0 0 0 0 0 0 36
E5 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 3

A mapping of the generated mutants verses the killed

mutants is presented in Fig. 3. It is evident that the killed
mutants represented a significant number of faults exposed
due to the proposed mutation operators. Nevertheless, there
are still some operators which could not be floated due to lack
of usage of those particular features in the sample case studies
taken. For instance, none of the web apps undertaken as case
studies implemented backend database connectivity, and
cookies as part of development. Sans these operators test
suites were written only to test the features falling under the
proposed operators’ category.

Fig. 1. Mutants Generated Vs Killed Mutants

VI. CONCLUSIONS AND FUTURE WORK

WEBMUT offers a humble beginning of the
proposed mutation operators by the authors. In continuance to
its purpose behind design, there needs to be more mutation
operators added including some more generic operators,
language based operators, to make it a generic tool that can be
offered across to any web based application and giving
flexibility to the tester to choose a set of operators that he
would like to apply for a specific application under test.

There can be some more generic operators proposed
for web application vulnerabilities like missing plugins, cross
browser compatibilities. Typically, one suits all kind of
testing suite is the need of the hour to test any kind of web
application. Sans functionality testing, integration
vulnerabilities, session management, cross browser, plugins,
database connectivity are some generic points of
vulnerabilities in web applications irrespective of
language/framework chosen for development. They need a a
more generic set of test cases to be designed for testing the
above vulnerabilities which have an indirect bearing on the
non functional aspects of web application like performance,
security, reliability etc. Further efforts should culminate into a

complete and comprehensive test suite for any web
application to test its non functional requirements.

The tool is working as per the expectations with
which it is built. However it could be further modified to feed
the results to a machine learning algorithm which upon taking
feed from the tool could make defect prediction in web
applications. Then the automated testing of web applications
would become an end to end solution for better performance
security of web apps. The tool could further be extended to
compute the test suite adequacy metric in an attempt to help
the testers gain deeper insights into the efficiency of the test
suite being employed by them for testing the web apps.
 However, other metrics pertaining to mutation testing need
further exploration like mutation score computation for
statistical evaluation of the web apps under test.

REFERENCES

1. Shakti Kundu. “Web Testing: Tool, Challenges and Methods”. IJCSI
International Journal of Computer Science Issues, Vol. 9, Issue 2, No 3,
March 2012. ISSN (Online): 1694-0814.

2. Arora A., Sinha M. “Web Application Testing: A Review on

Techniques, Tools and State of Art”. International Journal of Scientific

& Engineering Research, Volume 3, Issue 2, February-2012 ISSN
2229-5518.

3. Moheb R. Girgis, Tarek M. Mahmoud, Bahgat A. Abdullatif, Alaa M.
Zaki. “An Automated Web Application Testing System”. International

Journal of Computer Applications (0975 – 8887) Volume 99– No.7,
August 2014.

4. Nisha Gogna. “Study of Browser Based Automated Test Tools WATIR

and Selenium”. International Journal of Information and Education

Technology, Vol. 4, No. 4, August 2014.
5. Monika Sharma, Rigzin Angmo. “Web based Automation Testing and

Tools”. (IJCSIT) International Journal of Computer Science and
Information Technologies, Vol. 5 (1), 2014, 908-912. ISSN :
0975-9646.

6. J. Križani, A. Grguri, M. Mošmondor, P. Lazarevski. “Load testing and

performance monitoring tools in use with AJAX based web
applications”. MIPRO 2010, May 24-28, 2010, Opatija, Croatia.

7. LaShanda Dukes, Xiaohong Yuan, Francis Akowuah. “A Case Study on

Web Application Security Testing with Tools and Manual Testing”.

978-1-4799-0053-4/13 2013 IEEE.
8. Ali Mesbah, Mukul R. Prasad.“Automated Cross-Browser

Compatibility Testing”. ICSE ’11, May 21–28, 2011, Waikiki,
Honolulu, HI, USA.

9. http://www.cs.utah.edu/~juliana/pub/veriweb-www2002.pdf as on
8/4/17.

10. http://selab.fbk.eu/marchetto/tools/ajax/reAJAX as on 8/4/17
11. Sara Sprenkle, Holly Esquivel, Barbara Hazelwood, Lori Pollock,

“WEBVIZOR: A Visualization Tool for Applying Automated Oracles
and Analyzing Test Results of Web Applications”,

12. Valentin Dallmeier, Bernd Pohl, Martin Burger, Michael Mirold ,
Andreas Zeller, “WebMate: Web Application Test Generation in the

Real World”, ICSTW '14 Proceedings of the 2014 IEEE International
Conference on Software Testing, Verification, and Validation
Workshops,Pages 413-418 March 31 - April 04, 2014.

http://www.cs.utah.edu/~juliana/pub/veriweb-www2002.pdf%20as%20on%208/4/17
http://www.cs.utah.edu/~juliana/pub/veriweb-www2002.pdf%20as%20on%208/4/17
http://selab.fbk.eu/marchetto/tools/ajax/reAJAX%20as%20on%208/4/17

MUTWEB- A Testing Tool for performing Mutation Testing of Java and Servlet Based Web Applications

5413

Published By:
Blue Eyes Intelligence Engineering &
Sciences Publication

Retrieval Number: L37891081219/2019©BEIESP
DOI:10.35940/ijitee.L3789.1081219
Journal Website: www.ijitee.org

13. Hossain Shahriar and Mohammad Zulkernine, MUTEC:
Mutation-based Testing of Cross 28 Site Scripting, ICSE Workshop,
IEEE, 2009.

14. David Schuler · Andreas Zeller, Javalanche: Efficient Mutation Testing
for Java, ESEC-FSE,ACM, August 24–28, 2009.

15. Shabnam Mirshokraie, Ali Mesbah, Karthik Pattabiraman, Guided
Mutation Testing for JavaScript Web Applications, IEEE Transactions
on Software Engineering, VOL. 41, NO. 5, MAY 2015

16. Upsorn Praphamontripong, Web Mutation Testing, IEEE Fifth
International Conference on Software Testing,Verification and
Validation, 2012.

17. D. R. Lakshmi and S. S. Mallika, “A Review on Web Application

Testing and its Current Research Directions,” Int. J. Electr. Comput.

Eng., vol. 7, no. 4, p. 2132, 2017.
18. Mallika, S.S.: EATOOS-testing tool for unit testing of object oriented

software. Int. J. Comput. Appl. (0975–8887) 80(4), 6–10 (2013).
19. Augsornsri, P., Suwannasart, T.: An integration testing coverage tool for

object-oriented software. In: International Conference on Information
Science and Applications. IEEE, Seoul
(2014). https://doi.org/10.1109/icisa.2014.6847360.

20. Mutpy, https://bitbucket.org/khalas/mutpy last accessed as on 1/10/19.
21. PIT, “http://pitest.org/” last accessed on 1/10/19.
22. Cosmic Ray, “https://github.com/sixty-north/cosmic-ray last accessed

as on 1/10/19.
23. Sourceforge, “Jumble” http://jumble.sourceforge.net/, 2007 last

accessed as on 1/10/19.
24. B.H. Smith and L. Williams, “An Empirical Evaluation of the Mujava

Mutation Operators,” in Proceedings of the 3rd workshop on Mutation
Analysis(MUTATION ’07), published with the proceedings of the 2nd
testing. Academic and Industrial Conference Practice and Research
Techniques (TAIC PART ’07). Windsor, UK: IEEE Computer Society,

10-14 September 2007, pp. 193-202.

AUTHORS PROFILE

Mrs. S. Suguna Mallika obtained her B.Tech in Computer
science and Engineering from Nagarjuna University, India,
M.Tech in Computer Science from JNTU Hyderabad, India,
and currently pursuing her Ph.D in Computer Science and
Engineering from JNTU Kakinada, India. She is currently
working as an Associate Professor in the department of

Computer Science and Engineering at CVR College of Engineering,
Hyderabad, India. Her research interests are currently vested in the area of
Software Engineering.

Dr. D. Rajya Lakshmi obtained her B.E in Electronics. and
M.Tech in Computer Science and Engineering from Andhra
University, India and Ph.D from JNTU Hyderabad, India. She
is currently Principal JNTU UCEN, Jawaharlal Nehru
Technological University Kakinada’s constituent college,

University college of Engineering , Narsaraopet. Her research interests
include Computer Vision, Image Processing, Software Engineering, Data
Mining, Network Security and Soft computing.

https://doi.org/10.1109/icisa.2014.6847360
https://bitbucket.org/khalas/mutpy
http://pitest.org/
https://github.com/sixty-north/cosmic-ray
http://jumble.sourceforge.net/

