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Abstract: The paper proposed the Model of multiobjective 

quadratic fractional optimisation problem with a set of quadratic 

constraints and a methodology for obtaining a set of solutions 

based on the approach of using iterative parametric functions. 

Firstly, each fractional objective function is transformed into 

non-fractional parametric objective function by assigning a vector 

of parameters to each objective function. In this approach, the 

Decision Maker(DM) predecides the desired tolerance levels of the 

objective functions in the form of termination constants. Then, by 

using ε-constraint method, a set of efficient solutions is obtained 

and termination conditions are checked for each parametric 

objective function. Also, a comparative study of the proposed 

method and fuzzy approach is given to reveal the validity of the 

method. A numerical for Multiobjective quadratic fractional 

programming Model (MOQFPM) is given in the end to check the 

applicability of the approach.  

Keywords: Multiobjective quadratic fractional programming 

Model, parametric objective function, vector of parameters, 

ε-constraint method..  

I. INTRODUCTION 

From the past few decades, fractional optimization 

problems have gained huge importance and attracted many 

researchers due to their wide range of applications in health 

care management, corporate and financial planning, banking 

sector, science and engineering and in so many other fields. 

Multiobjective quadratic fractional programming Model 

(MOQFPM) are studied due to the fact that various real life 

conditions such as purchase/cost exist where several 

inter-related objectives are to be satisfied which are generally 

conflicting to each other. Model in which both numerator and 

denominator of the fractional objectives are quadratic with a 

set of constraints are termed as MOQFPM. The idea of 

tackling quadratic fractional programming goes back to 

Dinkelbach [12]. His approach was used by various 

researchers to study fractional optimization problems with 

the help of parametric functions. Hannu Valiaho [14] 

proposed unified approach to one-parametric quadratic 

programming. Maziar Salahi and Saeed Fallahi [13] also 

studied parametric approach for quadratic fractional 

problems. M.Borza et al. [1] proposed parametric method for 

absolute value LFP with interval coefficients. Zhixia and 

Fengqi [15] studied mixed Integer linear and Non-linear 
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fractional programming problems. Mishra and Ghosh [7] 

gave Fuzzy approach to quadratic fractional problems. 

Heesterman [4] also studied parametric methods in quadratic 

programming.Hertog [5] proposed interior point approach to 

linear and quadratic programming. Lachhwani [6] presented 

FGP approach to multiobjective fractional programming 

problem(MOFPP). Osman et al. [11] also propounded 

multi-level MOFPP with fuzzy parameters. Gupta and Puri 

[3] also studied extreme point quadratic fractional 

programming problems. Ojha and Biswal [10] presented 

ε-constraint method for MOFPP. Nayak and Ojha [8],[9] also 

proposed parametric approach for fractional programming 

problem(FPP) in linear form. Emam [2] studied 

multiobjective integer bi-level quadratic fractional 

programming problems with the help of ε-constraint method. 

Multiobjective fractional programming problems usually do 

not have single optimal solution to satisfy all the objectives 

simultaneously and hence the concept of pareto optimality 

came into forefront developed by Vilfredo Pareto. This 

pareto optimal or efficient solution optimises atleast one 

objective without dissatisfying the remaining objectives. 

Throughout the paper, we have used parametric approach 

proposed by Nayak and Ojha [8],[9] and extended their work 

to MOQFPM with the help of ε-constraint method. In this 

method, efficient solution is obtained by converting quadratic 

FPP into non-fractional problem by predefining termination 

constants. 

II.  NOTATIONS AND PRELIMINARIES 

In the paper, we denote the space of n-dimensional real 

vectors by 𝑅𝑛 . For a given vector 𝑥 , 𝑥𝑇  represents the 

transpose of 𝑥 . We assign a vector of parameters 𝛼(𝑡)  to 

objective functions where ′𝑡′ denotes iteration number. 𝑇𝑖  in 

the paper represents termination constants defined by 

decision maker. ′𝑆′ represents a set of constraints.  

1) Pareto or Efficient Solution 

 A vector 𝑢 ∈ 𝑆 is called a pareto or efficient solution if 

another feasible solution 𝑣 ∈ 𝑆 such that 𝑓𝑖(𝑣) ≤ 𝑓𝑖(𝑢) for 

all 𝑖 and 𝑓𝑖(𝑣) < 𝑓𝑖(𝑢) for atleast one 𝑖, otherwise ̀ u' will not 

remain efficient solution as 𝑓(𝑣) dominates 𝑓(𝑢). Moreover, 

𝑢 ∈ 𝑆  is said to be weakly efficient solution if  another 

feasible solution 𝑣 ∈ S such that 𝑓𝑖(𝑣) < 𝑓𝑖(𝑢)∀𝑖. 

III. MULTIOBJECTIVE QUADRATIC FRACTIONAL 

PROGRAMMING MODEL 

In MOQFPM, we need to simultaneously optimize several 

inter-related objective functions which are generally 

conflicting to each other under a common set of constraints. 

In general, all the objective functions are not satisfied by only 

one optimal solution.  

 

 

 

 

Multiobjective Quadratic Fractional Programming 

using Iterative Parametric Function 
Deepak Gupta, Suchet Kumar, Vandana Goyal, 

https://www.openaccess.nl/en/open-publications
http://www.ijitee.org/
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijitee.K2010.0981119&domain=www.ijitee.org


 

Multiobjective Quadratic Fractional Programming using Iterative Parametric Function 

2117 

 

Published By: 

Blue Eyes Intelligence Engineering 
and Sciences Publication (BEIESP) 

© Copyright: All rights reserved. 

Retrieval Number: K20100981119/19©BEIESP 

DOI: 10.35940/ijitee.K2010.0981119 

Journal Website: www.ijitee.org 

Hence, a set of efficient solutions is found which satisfies 

atleast one objective function without dissatisfying other 

objectives. MOQFPM is given as follows: 

𝑀𝑖𝑛𝑓(𝑥) = {𝑓1(𝑥), 𝑓2(𝑥), 𝑓3(𝑥), . . . . . . . . , 𝑓𝑚(𝑥)} 

𝑠𝑢𝑐ℎ  𝑡ℎ𝑎𝑡 𝑥 ∈ 𝑆 

𝑤𝑖𝑡ℎ  𝑓𝑖(𝑥) =
𝑓𝑖1(𝑥)

𝑓𝑖(𝑥)
;   𝑖 = 1,2, … ,𝑚 

𝑤ℎ𝑒𝑟𝑒  𝑓𝑖(𝑥) =

1

2
𝑥𝑇𝐷𝑖1𝑥  +   𝐶𝑖1𝑥 + 𝑑𝑖1
1

2
𝑥𝑇𝐷𝑖2𝑥 + 𝐶𝑖2𝑥 + 𝑑𝑖2

 

 And S is the set of quadratic constraints given by  

𝑆 = {𝑥 ∈ 𝑅𝑛|
1

2
𝑥𝑇𝐴𝑗𝑥 + 𝐵𝑗𝑥 + 𝑑𝑗 (

≤
≥
=
)0, 𝑥 ≥ 0} 

Where 𝐷𝑖1, 𝐷𝑖2 are 𝑛 × 𝑛 real matrices.  

𝐶𝑖1, 𝐶𝑖2 ∈   𝑅
𝑛; 𝑑𝑖1, 𝑑𝑖2   ∈ 𝑅  and 𝐴𝑗  is a 𝑘 × 𝑛  real matrix 

𝐵𝑗 ∈   𝑅
𝑛; 𝑑𝑗   ∈ 𝑅  𝑤ℎ𝑒𝑟𝑒  𝑗 ∈ {1, 2, ..., k  

IV. PARAMETRIC APPROACH TO QUADRATIC 

FRACTIONAL PROGRAMMING  

In parametric approach [1], [8], [9], [12], we assign a vector 

of parameters 𝛼𝑖  to each objective function 𝑓𝑖(𝑥)  which 

transforms fractional programming Model into 

non-fractional  parametric  Model given as:  

𝑀1: 𝑀𝑖𝑛𝑓(𝑥) = (𝑓1(𝑥), 𝑓2(𝑥), . . . , 𝑓𝑚(𝑥)) 
 

𝑤𝑖𝑡ℎ  𝑓𝑖(𝑥) =
𝑓𝑖1(𝑥)

𝑓𝑖2(𝑥)
, 𝑖 = 1,2, . . . , 𝑚 

 

 Take 𝑓𝑖 (x) = 𝛼𝑖   i.e 
𝑓𝑖1(𝑥)

𝑓𝑖2(𝑥)
= 𝛼𝑖 

and let 𝑃𝑖(𝑥) = 𝑓𝑖1(𝑥) − 𝛼𝑖𝑓𝑖2(𝑥) 
 

∴ Model 𝑀1  is reduced to the following non-fractional 

Model 𝑀2. 

 

𝑀2: 𝑀𝑖𝑛
𝑥∈  𝑆

  𝑓(𝑥) = min
𝑖
{𝑃𝑖(𝑥)} 

 

= {𝑓𝑖1(𝑥) − 𝛼𝑖𝑓𝑖2(𝑥)}, 𝑖 = 1,2, . . . , 𝑚 

By using results of Dinkelbach on parametric and Quadratic 

fractional programming problem, we have the following 

results:   

 • Result 1: A vector 𝑢 ∈ 𝑆  is referred to be an optimal 

solution of 𝑀1 iff  

𝑀𝑖𝑛
𝑥∈ 𝑆

{𝑓𝑖1(𝑥)  − 𝛼𝑖
′𝑓𝑖2(𝑥)} = 0 

𝑤ℎ𝑒𝑟𝑒  𝛼𝑖
′ =

𝑓𝑖1(𝑢)

𝑓𝑖2(𝑢)
 

 

 • Result 2: A vector 𝑢 ∈ 𝑆 is referred to be an efficient 

solution of 𝑀2 if ∀  𝑥 ∈ 𝑆, 
𝑓𝑖1(𝑥) − 𝛼𝑖

′𝑓𝑖2(𝑥) = 0  ∀𝑖  𝑜𝑟  𝑓𝑖1(𝑥) − 𝛼𝑖
′𝑓𝑖2(𝑥)

> 0  𝑓𝑜𝑟  𝑎𝑡  𝑙𝑒𝑎𝑠𝑡  𝑜𝑛𝑒  𝑖 
 

Theorem: A vector 𝑢 ∈ 𝑆  is referred to be an efficient 

solution of 𝑀1 iff `u' is an efficient solution of 𝑀2. 

Proof: Suppose 𝑢 ∈ 𝑆 is an efficient solution of 𝑀1. 

Let 𝑃𝑖(𝑥) = [𝑓𝑖1(𝑥) − 𝛼𝑖
′𝑓𝑖2(𝑥)]; 1 ≤ 𝑖 ≤ 𝑚 

 

• To prove: 𝒖 ∈ 𝑺 is an efficient solution of 𝑴𝟐 

On contrary, let us assume that`u' is not an efficient solution 

of 𝑀2. 

 By definition of efficient solution, ∃  𝑣 ∈ 𝑆  such that 

𝑃𝑖(𝑣)   ≤   𝑃𝑖(𝑢)  ∀  𝑖 and 𝑃𝑖(𝑣) < 𝑃𝑖(𝑢) for atleast one 𝑖. 
i.e  𝑓𝑖1(𝑣)   −   𝛼𝑖

′𝑓𝑖2(𝑣)   ≤   𝑓𝑖1(𝑢) − 𝛼𝑖
′𝑓𝑖2(𝑢)  ∀𝑖. 

 

𝑓𝑖1(𝑣) − 𝛼𝑖
′𝑓𝑖2(𝑣) < 𝑓𝑖1(𝑢) − 𝛼𝑖

′𝑓𝑖2(𝑢)  𝑓𝑜𝑟  𝑎𝑡𝑙𝑒𝑎𝑠𝑡  𝑜𝑛𝑒  𝑖 

i.e. 𝑓𝑖1(𝑣)   −   𝛼𝑖
′𝑓𝑖2(𝑣)   ≤ 0  ∀𝑖. [𝑎𝑠

𝑓𝑖1(𝑢)

𝑓𝑖2(𝑢)
= 𝛼𝑖

′] 

 and   𝑓𝑖1(𝑣)   −   𝛼𝑖
′𝑓𝑖2(𝑣) < 0    𝑓𝑜𝑟  𝑎𝑡𝑙𝑒𝑎𝑠𝑡  𝑜𝑛𝑒  𝑖 

 

i.e. 
𝑓𝑖1(𝑣)

𝑓𝑖2(𝑣)
≤  𝛼𝑖

′    ∀  𝑖 

 

and   
𝑓𝑖1(𝑣)

   𝑓𝑖2(𝑣)
< 𝛼𝑖

′  𝑓𝑜𝑟  𝑎𝑡𝑙𝑒𝑎𝑠𝑡  𝑜𝑛𝑒 𝑖 

 ∴    𝑓𝑖(𝑣)   ≤   𝑓𝑖(𝑢)  ∀𝑖. 
and 𝑓𝑖(𝑣) < 𝑓𝑖(𝑢)  𝑓𝑜𝑟  𝑎𝑡𝑙𝑒𝑎𝑠𝑡  𝑜𝑛𝑒  𝑖 
This contradicts that `u' is an efficient solution of 𝑀1. 

∴  Our supposition is wrong. 

 Hence, `u' is also an efficient solution of 𝑀2.  

Conversely, Suppose that `u' is an efficient solution of 𝑀2. 

 • To prove: `u'is an efficient solution 𝑴𝟏. 

On contrary, suppose that 𝑢 ∈ 𝑆 is not an efficient solution of 

𝑀1.  

∴ ∃  𝑣 ∈ 𝑆 such that  𝑓𝑖(𝑣)   ≤   𝑓𝑖(𝑢)  ∀𝑖. 
and 𝑓𝑖(𝑣) < 𝑓𝑖(𝑢) for atleast one i. 

 

i.e. 
𝑓𝑖1(𝑣)

𝑓𝑖2(𝑣)
< 𝛼𝑖

′  ∀𝑖;   𝑤ℎ𝑒𝑟𝑒  𝛼𝑖
′ =

𝑓𝑖1(𝑢)

𝑓𝑖2(𝑢)
 

 

            and       
𝑓𝑖1(𝑣)

𝑓𝑖2(𝑣)
< 𝛼𝑖

′ for one 𝑖 atleast. 

                 ∴     𝑓𝑖1(𝑣) − 𝛼𝑖
′𝑓𝑖2(𝑣)   ≤ 0  ∀𝑖. 

and 𝑓𝑖1(𝑣)   −  𝛼𝑖
′𝑓𝑖2(𝑣) < 0 for one 𝑖 atleast. 

 

∴    𝑃𝑖(𝑣)   ≤   0    ∀𝑖. 
and  𝑃𝑖(𝑣) < 0 for atleast one 𝑖. 

 

∴   𝑃𝑖(𝑢) = 𝑓𝑖1(𝑢) − 𝛼𝑖
′𝑓𝑖2(𝑢) 

 

         𝑃𝑖(𝑢) = 𝑓𝑖1(𝑢)  −   
𝑓𝑖1(𝑢)

𝑓𝑖2(𝑢)
𝑓𝑖2(𝑢) 

 

               ∴        𝑃𝑖(𝑢) = 0   

∴  𝑃𝑖(𝑣)   ≤   𝑃𝑖(𝑢)  ∀𝑖. 
        and 𝑃𝑖(𝑣) < 𝑃𝑖(𝑢) for atleast one i.  

This contradicts that `u' is an efficient solution of 𝑀2.  

So, our supposition is wrong. 

Hence, 𝑢 ∈ 𝑆is also an efficient solution of 𝑀1.  

V. 𝛆 - CONSTRAINT METHOD 

This method is used to obtain efficient solutions of 

Multiobjective problems [2], [8], [9]. In this method, one 

objective function is optimized to its best desired level and 

remaining objectives are converted into constraints with their 

acceptability levels maintained by the efficient solution. The 

ε -constraint method is expressed as follows:  

 𝑀𝑖𝑛  𝑃𝑟(𝑥),    𝑟 ∈ {1,2, . . ., 𝑚} 

http://www.ijitee.org/
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𝑠𝑢𝑐ℎ  𝑡ℎ𝑎𝑡  𝑃𝑖(𝑥)  ≤   𝜀𝑖  ∀𝑖 = 1,2, . . . , 𝑟 − 1,
𝑟 + 1, . . . 𝑚 𝑎𝑛𝑑  𝑥  ∈ 𝑆 

 

 

where 𝜀𝑖   ∈   [𝜀𝑖
𝐿 , 𝜀𝑖

𝑈]  and 𝜀𝑖
𝐿 & 𝜀𝑖

𝑈  are the lowest and the 

greatest values of the objective function 𝑃𝑖(𝑥). By putting 

different values of  𝜀𝑖, we can find a set of efficient solutions.  

VI. FORMULATION AND METHODOLOGY OF 

MODEL 

𝑀1: 𝑀𝑖𝑛  𝑓(𝑥) = {𝑓1(𝑥), 𝑓2(𝑥), . . . , 𝑓𝑚(𝑥)} 
 

𝑤𝑖𝑡ℎ  𝑓𝑖(𝑥) =
𝑓𝑖1(𝑥)

𝑓𝑖2(𝑥)
, ∀1 ≤ 𝑖 ≤ 𝑚 

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡  𝑡𝑜  𝑥 ∈ 𝑆 

 

  𝑆 = {𝑥 ∈ 𝑅𝑛|
1

2
𝑥𝑇𝐴𝑗  𝑥  +  𝐵𝑗𝑥  +   𝑑𝑗 (

≥
≤
=
)0, 𝑥 ≥ 0} 

 

𝑤ℎ𝑒𝑟𝑒  𝑗 = 1,2, . . . , 𝑘 

Let us assume that each 𝑓𝑖(𝑥) = 𝛼𝑖
(𝑡)
, 𝑖 = 1,2, . . ., 𝑚 where 

`𝑡′ is the iteration no. 

 Let 𝛼(𝑡) = (𝛼1
(𝑡)
, 𝛼2

(𝑡)
, . . . , 𝛼𝑚

(𝑡)
)  be the vector of 

parameters for the objective function 𝑓(𝑥).  and suppose 

𝑃𝑖(𝛼
(𝑡)) = 𝑓𝑖1(𝑥) − 𝛼𝑖

(𝑡)
𝑓𝑖2(𝑥), 𝑖 = 1,2, . . . , 𝑚.  

So, the above Model 𝑀1  is transformed to Multiobjective 

parametric non-fractional Model 𝑀2given as follows :  

𝑀2: 𝑀𝑖𝑛  𝑃𝑖(𝛼
(𝑡)) = {𝑓𝑖1(𝑥) −  𝛼𝑖

(𝑡)
𝑓𝑖2(𝑥)} 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡  𝑡𝑜  𝑥 ∈ 𝑆 

Now, by ε-constraint method, we will optimize one objective 

function depending upon the priorities decided by the 

Decision Maker (DM) and convert other objective functions 

as constraints. 

 Thus, we can convert Model 𝑀2 into Model 𝑀3 as 

follows:  

𝑀3: 𝑀𝑖𝑛  𝑃𝑟(𝛼
(𝑡)) = 𝑓𝑟1(𝑥) − 𝛼𝑟

(𝑡)
𝑓𝑟2(𝑥) 

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡  𝑡𝑜 

 

𝑃𝑖(𝛼
(𝑡)) = 𝑓𝑖1(𝑥) − 𝛼𝑖

(𝑡)𝑓𝑖2(𝑥)  ≤ 𝜀𝑖 

∀ 𝑖 = 1,2, . . . , 𝑟 − 1, 𝑟 + 1, . . . , 𝑚 

𝑎𝑛𝑑  𝑥 ∈ 𝑆 𝑤ℎ𝑒𝑟𝑒  𝜀𝑖 ∈ [𝜀𝑖
𝐿 , 𝜀𝑖

𝑈] 
Let 𝑋𝑖  (𝑖 = 1,2, . . . , 𝑚) be the individual optimal solutions of 

𝑓𝑖(𝑥) subject to 𝑥 ∈ 𝑆. 

 Table I is constructed to find the values of 

𝑓𝑖(𝑋𝑖)  ∀  𝑖 = 1,2, . . ., 𝑚 as follows:  

 

Table I: objective function values of 𝑴𝟏 
𝑋𝑖 𝑓1(𝑋𝑖) 𝑓2(𝑋𝑖) 𝑓3(𝑋𝑖)  ......  𝑓𝑚(𝑋𝑖) 

𝑋1 𝑓1(𝑋1) 𝑓2(𝑋1) 𝑓3(𝑋1)  ......  𝑓𝑚(𝑋1) 

𝑋2 𝑓1(𝑋2) 𝑓2(𝑋2) 𝑓3(𝑋2)  ......  𝑓𝑚(𝑋2) 

      

𝑋𝑚 𝑓1(𝑋𝑚) 𝑓2(𝑋𝑚) 𝑓3(𝑋𝑚)  ......  𝑓𝑚(𝑋𝑚) 

 

Define 𝜀𝑖
𝐿  𝑎𝑛𝑑  𝜀𝑖

𝑈 as follows :  

𝜀𝑖
𝐿 = min{𝑃𝑖(𝑋𝑖)|1 ≤ 𝑖 ≤ 𝑚} 
𝜀𝑖
𝑈 = max{𝑃𝑖(𝑋𝑖)|1 ≤ 𝑖 ≤ 𝑚} 

Then, calculate initial feasible solution 𝑋(0)  to 𝑀3  as 

follows:  

𝑋(0) =∑

𝑚

𝑖=1

𝑤𝑖𝑋𝑖 

Where ∑𝑚𝑖=1 𝑤𝑖 = 1  𝑎𝑛𝑑  𝑤𝑖 ≻ 0  and 𝑋𝑖  are the individual 

optimal solutions of 𝑓𝑖(𝑥)  ∀  𝑖 = 1,2, . . ., 𝑚 . Nearly equal 

weights are considered for each 𝑋𝑖. Next, we obtain the initial 

vector of parameters as  

𝛼(1) = (𝛼1
(1)
, 𝛼2

(1)
, . . . 𝛼𝑚

(1)
) 

= {𝑓1(𝑋
(0)), 𝑓2(𝑋

(0)), . . . , 𝑓𝑚(𝑋
(0))} 

We then substitute 𝛼(1)  in each 𝑃𝑖(𝛼
(𝑡))  and check 

termination conditions and continue the process till the 

termination conditions are satisfied. 

VII. TERMINATION CONSTANTS AND 

CONDITIONS 

Terminations constants (𝑇𝑖) are basically the tolerance values 

of the objective functions 𝑓𝑖(𝑥) which are acceptable by the 

DM. These values are predetermined by DM considering the 

priority of the objective function and are generally taken 

nearer to zero. So, Termination conditions are defined as :  

|𝑃𝑖(𝛼
(𝑡))|   ≤   𝑇𝑖 , 𝑖 = 1,2, . . . , 𝑚 

Where each 𝑇𝑖 > 0. 

VIII. ASSUMPTIONS 

• Equal weightage is given to individual solutions of each 

fractional function in the initial solution.  

• Termination constants are decided by the Decision Maker 

for every objective function and generally taken close to zero.  

• Initial feasible solution to the problem is given by  

𝑋(0) =∑

𝑚

𝑖=1

𝑤𝑖𝑋𝑖 

Where ∑𝑚𝑖=1 𝑤𝑖 = 1  𝑎𝑛𝑑  𝑤𝑖 ≻ 0. 

IX. ALGORITHM 

1.  Take the Initial value of the vector of parameters as          

              𝛼(1) = (𝛼1
(1)
, 𝛼2

(1)
, . . . 𝛼m

(1)
) 

 

= {𝑓1(𝑋
(0)), 𝑓2(𝑋

(0)), . . . , 𝑓𝑚(𝑋
(0))} 

 

 2.  Obtain non-fractional parametric functions 𝑃𝑖(𝛼
(1)) by 

substituting (𝛼(1)). 
 

3.  Select 𝑃𝑟(𝛼
(1)) as the objective function with least value 

of  𝑇𝑟 . 
 

4.  Select different values of 𝜀𝑖 ∈ [𝜀𝑖
𝐿 , 𝜀𝑖

𝑈]; where i = 1, ..., r – 

1, r + 1, ... m as follows:  

 

 (a) If [−𝑇𝑖 , 𝑇𝑖] ∩ [𝜀𝑖
𝐿 , 𝜀𝑖

𝑈] =  𝜙, then, select𝜀𝑖  ∈ [𝜀𝑖
𝐿 , 𝜀𝑖

𝑈] 
 

(b) Otherwise select 𝜀𝑖 ∈ [−𝑇𝑖 , 𝑇𝑖] 
5.  Find a set of efficient solutions for Model M3 by 

substituting different values of 𝜀𝑖. Software lingo 15 is used 

for this purpose. 
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6.  Check the Termination conditions |𝑃𝑖(𝛼
(1))|   ≤

  𝑇𝑖   ∀  𝑖 = 1,2, . . ., 𝑚 

7. If termination conditions are satisfied, then we end up our 

process. Otherwise, go to step 8. 

8.  Determine 𝑀𝑖𝑛  ∑𝑖 (|𝑃𝑖(𝛼
(1))|   − 𝑇𝑖) for 𝑖 ∈   {1, 2, ..., 

m} at which conditions are not satisfied for every set of 

efficient solution. 

9.  Suppose 𝑋(1) = (𝑋1
(1)
, 𝑋2

(1)
, . . . , 𝑋𝑚

(1)
) be the          

compromised solution at which  

∑ (|𝑃𝑖(𝛼
(1))|   −   𝑇𝑖) is minimum. 

10.  Compute 𝛼(2) = (𝛼1
(2)
, 𝛼2

(2)
, . . . , 𝛼𝑚

(2)
) 

       i.e.     𝛼(2) = (𝑓𝑖(𝑋
(1)), 𝑓2(𝑋

(1)), . . . , 𝑓𝑚(𝑋
(1)) 

11.  Find another set of efficient solution of 𝑀3 and test 

termination conditions for them. 

12.  Repeat the method until we obtain a set of efficient 

solution which satisfies |𝑃𝑖(𝛼
(𝑡))|  ≤   𝑇𝑖∀    𝑖 = 1,2, . . ., 𝑚. 

Otherwise, redefine the termination constants. 

13.  Once, efficient solution set is obtained, then decision 

maker can choose any one value out of them as the efficient 

solution.  

X. ILLUSTRATIVE NUMERICAL 

Consider the MOQFPM given below :-  

𝑀𝑖𝑛𝑓(𝑥) = {𝑓1(𝑥) =
2𝑥1

2 + 𝑥3

𝑥2
2 + 3

, 𝑓2(𝑥) =
2𝑥3

2 + 𝑥2

𝑥1
2 + 3

} 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡  𝑡𝑜 

𝑆 =

{
 
 

 
 
2𝑥1

2 + 𝑥2
2 + 𝑥3 ≤ 4

2𝑥1
2 + 𝑥3

2 + 𝑥1 ≤ 5

𝑥3
2 + 𝑥1

2 + 𝑥2 ≥ 3

𝑥2
2 + 𝑥1

2 + 𝑥3
2 ≤ 6

𝑥1, 𝑥2, 𝑥3 ≥ 0 }
 
 

 
 

 

Solution with the help of parametric method: 

Individual initial optimal solutions of the functions 

𝑓1(𝑥) and 𝑓2(𝑥) are obtained with the help of software lingo 

15 and they come out to be  

𝑋1 = (𝑥1
1, 𝑥2

1, 𝑥3
1) = (0,1.281,1.31) 

 

𝑋2 = (𝑥1
2, 𝑥2

2, 𝑥3
2) = (1.13,0.619,1.05) 

 

Table II: Objective functions at initial solution  

𝑋𝑖 𝑓1(𝑋𝑖) 𝑓2(𝑋𝑖) 
𝑋1  0.2823   1.571  

𝑋2  1.065   0.66  

 

 From the Table II, we can see that  

0.2823  ≤   𝑓1(𝑥)  ≤   1.065  
and 0.66  ≤   𝑓2(𝑥)   ≤   1.571 

 Let equal weights be assigned to each solution  

i.e. 𝑤1 = 𝑤2 = 0.5 

 Initial optimal solution is given by : 

𝑋(0) = 𝑤1𝑋1 + 𝑤2𝑋2 

 

𝑋(0) = 0.5(0,1.281,1.31) + 0.5(1.13,0.619,1.05) 
 

𝑋(0) = (0.565,0.95,1.18) 
So, initial value of the vector of parameters is  

𝛼(1) = (𝛼1
(1)
, 𝛼2

(1)
) 

𝛼(1) = (𝑓1(𝑋
(0)), 𝑓2(𝑋

(0))) 
𝛼(1) = (0.466,1.125) 

For converting fractional objectives into non-fractional 

parametric functions, suppose  

𝑃1(𝛼
(𝑡)) = (2𝑥1

2 + 𝑥3)   −   𝛼1
(𝑡)
(𝑥2

2 + 3) 
Where `𝑡′ represents iteration number  

𝑃2(𝛼
(𝑡)) = (2𝑥3

2 + 𝑥2)   −   𝛼2
(𝑡)
(𝑥1

2 + 3) 

Thus, 𝑃1(𝛼
(1)) = (2𝑥1

2 + 𝑥3)   −   0.466(𝑥2
2 + 3) 

𝑃1(𝛼
(1)) = 2𝑥1

2 − 0.466𝑥2
2 + 𝑥3 − 1.398 

𝑃2(𝛼
(1)) = (2𝑥3

2 + 𝑥2)   −   1.125(𝑥1
2 + 3) 

= −1.125𝑥1
2 +   2𝑥3

2 + 𝑥2 − 3.375 

Thus, non-fractional parametric programming problem is 

given by :  

𝑀𝑖𝑛  𝑓(𝑥) = 𝑀𝑖𝑛  {𝑃1(𝛼
(1)), 𝑃2(𝛼

(1))} 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡  𝑡𝑜  𝑥  ∈ 𝑆 

Defining termination constants as  

𝑇1 = 0.02    𝑎𝑛𝑑    𝑇2 = 0.03 

Initial solutions of 𝑃1(𝛼
(1)) and 𝑃2(𝛼

(1)) comes out to be  

𝑋1 = (0,1.28,1.31) and 𝑋2 = (1.16,0.48,1.09)respectively 

Because 𝑇1 < 𝑇2. 

 Therefore, by using ε-constraint method, non-fractional 

parametric problem is considered as following:  

𝑀𝑖𝑛  𝑃1(𝛼
(1)) = 2𝑥1

2   −   0.466𝑥2
2 + 𝑥3 − 1.398 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡  𝑡𝑜 

2𝑥3
2 − 1.125𝑥1

2 + 𝑥2 − 3.375  ≤   𝜀2 

𝑎𝑛𝑑  𝑥  ∈ 𝑆 

𝑤ℎ𝑒𝑟𝑒  𝜀2   ∈   [𝜀2
𝐿 , 𝜀2

𝑈] 
and 𝜀2

𝐿 =   𝑀𝑖𝑛  {𝑃2(𝑋𝑖); 𝑖 = 1,2} 
i.e. 𝜀2

𝐿 =   𝑀𝑖𝑛  {𝑃2(𝑋1), 𝑃2(𝑋2)} = −2.033 

and 𝜀2
𝑈 =   𝑀𝑎𝑥  {𝑃2(𝑋1), 𝑃2(𝑋2)} = 1.337 

∴       [𝜀2
𝐿 , 𝜀2

𝑈] = [−2.033,1.337] 
Thus, [−𝑇2, 𝑇2]   ⊆   [𝜀2

𝐿 , 𝜀2
𝑈]. 

So, we choose 𝜀2  ∈  [−𝑇2, 𝑇2]  
i.e. 𝜀2   ∈   [−0.03,0.03] 
So, by substituting different values of  𝜀2, we get a set of 

pareto optimal solutions which are shown in Table III. 

Table III: Values of Efficient solutions 

𝜀2 𝑥1 𝑥2 𝑥3 𝑃1(𝛼
(1)) 

|𝑃1(𝛼
(1))|

− 𝑇1 

– 0.03   0.6762   1.226   1.147   – 0.036858   0.016858  

– 0.024   0.6749   1.226   1.148   – 0.0396018   0.0196  

– 0.018   0.6734   1.226   1.149   – 0.04235   0.0223  

– 0.012   0.67199   1.226   1.15   – 0.04509   0.02509  

– 0.006   0.67059   1.226   1.15   – 0.04785   0.02785  

0.006   0.6678   1.225   1.15   – 0.05335   0.03335  

0.012   0.6663   1.225   1.15   – 0.05611   0.03611  

0.018   0.6649   1.225   1.15   – 0.05887   0.03887  

0.024   0.6635   1.225   1.16   – 0.0616   0.0416  

0.03   0.6621   1.225   1.16   – 0.06439   0.04439  
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So, the above set of efficient solution is obtained using Lingo 

15 software. 

Thus, at each efficient solution obtained above, 

|𝑃2(𝛼
(1))|   ≤ 𝑇2. But we can see that |𝑃1(𝛼

(1))| > 𝑇1. So, 

termination condition is not satisfied by 𝑃1(𝛼
(1)). 

Now, 

𝑀𝑖𝑛  ∑

𝑖

|(𝑃𝑖(𝛼
(1))|   −   𝑇𝑖) = 𝑀𝑖𝑛  (|𝑃1(𝛼

(1))| − 𝑇1)

= 0.016858(fromTableIII) 
It occurs at 𝑋1 = (0.6762, 1.226, 1.147). 

Thus, 𝑋1 is the compromised solution. 

 So, the next iterated vector of parameters is given by  

𝛼(2) = (𝛼1
(2)
, 𝛼2

(2)
) 

𝛼(2) = (𝑓1(𝑋
(1)), 𝑓2(𝑋

(1))) 
𝛼(2) = (0.4578,1.116) 

Thus, New iterated parametric programming Model is:  

𝑃1(𝛼
(2)) = (2𝑥1

2 + 𝑥3) − 0.4578(𝑥2
2 + 3) 

= 2𝑥1
2 − 0.4578𝑥2

2 + 𝑥3 − 1.3734 

𝑃2(𝛼
(2)) = (2𝑥3

2 + 𝑥2) − 1.116(𝑥1
2 + 3) 

= 2𝑥3
2 − 1.116𝑥1

2 + 𝑥2 − 3.348 

Model: 𝑀𝑖𝑛  𝑓  (𝑥) = 𝑀𝑖𝑛  {𝑃1(𝛼
(2)), 𝑃2(𝛼

(2))} 
𝑠𝑢𝑏𝑗𝑒𝑐𝑡  𝑡𝑜  𝑥 ∈ 𝑆 

With the help of software Lingo 15, initial individual optimal 

solutions of 𝑃1(𝛼
(2)) and 𝑃2(𝛼

(2)) comes to be  

𝑋1 = (0,1.281,1.311), 𝑋2 = (1.159,0.4772,1.086) 
Since 𝑇1 < 𝑇2. 

So, above Model is transformed to following Model:  

𝑀𝑖𝑛  𝑃1(𝛼
(2)) = 2𝑥1

2 − 0.4578𝑥2
2 + 𝑥3 − 1.3734 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡  𝑡𝑜 

2𝑥3
2 − 1.116𝑥1

2 + 𝑥2 − 3.348  ≤   𝜀2 

𝑎𝑛𝑑  𝑥  ∈   𝑆 

𝑤ℎ𝑒𝑟𝑒  𝜀2 ∈   [𝜀2
𝐿 , 𝜀2

𝑈] 
and 𝜀2

𝐿 = min{𝑃2(𝑋1), 𝑃2(𝑋2)} =   −2.01 

an𝜀2
𝑈 =   𝑀𝑎𝑥  {𝑃2(𝑋1), 𝑃2(𝑋2)} = 1.37.  

Thus [𝜀2
𝐿 , 𝜀2

𝑈] = [−2.01,1.37] and [−𝑇2, 𝑇2]   ⊆   [𝜀2
𝐿 , 𝜀2

𝑈].  
So, we choose 𝜀2   ∈   [−𝑇2, 𝑇2] 

 

Table IV: values of efficient solutions 
𝜺𝟐 𝒙𝟏 𝒙𝟐 𝒙𝟑 𝑷𝟏(𝜶

(𝟐)) 
– 0.03   0.6834   1.226   1.143   0.0143  

– 0.024   0.6819   1.227   1.144   0.0116  

– 0.018   0.6806   1.227   1.145   0.0088  

– 0.012   0.6792   1.227   1.146   0.0061  

– 0.006   0.6778   1.226   1.146   0.0033  

0.006   0.6750   1.226   1.148   – 0.0022  

0.012   0.6736   1.226   1.149   – 0.0049  

0.018   0.6722   1.226   1.15   –0.00768  

0.024   0.6708   1.226   1.151   – 0.0104  

0.03   0.6694   1.226   1.151   – 0.0132  

 From the Table IV, it is clear that |𝑃1(𝛼
(2))| < 𝑇1 at each 

efficient solution. Moreover, we can easily check that 

|𝑃2(𝛼
(2))|   ≤   𝑇2 at each solution. Thus, Termination 

condition is satisfied by both 𝑃1(𝛼
(2)) and 𝑃2(𝛼

(2)). So, the 

decision maker can choose any of the above find efficient 

solution as the best solution to the problem. The values of 

𝑓1(𝑥)  𝑎𝑛𝑑  𝑓2(𝑥) which are evaluated at each above found 

solution are :  

Table V: values of objective functions 
𝑥1 𝑥2 𝑥3 𝑓1(𝑥) 𝑓2(𝑥) 

0.6834   1.226   1.143   0.4613   0.7304  

0.6819   1.227   1.144   0.4603   0.73181  

0.6806   1.227   1.145   0.3569   0.7328  

0.6792   1.227   1.146   0.3567   0.7339  

0.6778   1.226   1.146   0.3565   0.7340  

0.6750   1.226   1.148   0.3561   0.7372  

0.6736   1.226   1.149   0.3559   0.7372  

0.6722   1.226   1.15   0.3557   0.7383  

0.6708   1.226   1.151   0.3555   0.7394  

0.6694   1.226   1.151   0.3551   0.7398  

Comparative study of parametric method and fuzzy 

programming method: 

Solution with the help of fuzzy goal programming is given 

by: 

We know (𝑥1
1, 𝑥2

1, 𝑥3
1) = (0,1.281,1.31)  and (𝑥1

2, 𝑥2
2, 𝑥3

2) =
(1.13,0.619,1.05)  are the individual optimal solutions of 

𝑓1(𝑥)  𝑎𝑛𝑑  𝑓2(𝑥).  
Also, (𝑓1)min = 0.2823  ≤   𝑓1(𝑥)   ≤   1.065 = (𝑓1)max 

(𝑓2)min − 0.66  ≤   𝑓2(𝑥)   ≤   1.511 = (𝑓2)max 
By solving the considered numerical example with fuzzy 

goal programming, best optimal solution comes out to be  

(𝑓1(𝑥), 𝑓2(𝑥)) = (0.2842,0.9072) 
Thus, we can see that the values of (𝑓1(𝑥), 𝑓2(𝑥)) calculated 

with the help of the proposed method and the fuzzy approach 

are comparable to each other and this validates the proposed 

method of parametric functions. 

XI. CONCLUSION 

This paper proposed an approach of solving MOQFPM by 

converting it into single objective non- fractional parametric 

programming Model with the help ofε-constraint method and 

this method can be extended for solving bi-level and 

multilevel fractional programming Models.The parametric 

approach used in the study makes it very easy to transform 

fractional objectives into non-fractional functions for which 

efficient solutions can be obtained easily. In the numerical 

example illustrated in the paper, the set of solutions obtained 

with the proposed method are comparable to those obtained 

with fuzzy approach, which validates the feasibility of our 

approach.  
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