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     Abstract: Word embedding in simple term can be defined as 

representing text in form of vectors.  Vector representations of 

text help people in finding similarities, because contextual words 

that seem to appear nearby regularly use to appear in close 

proximity in vector space. The motivating factor behind such 

numerical representation of text corpus is that it can be 

manipulated arithmetically just like any other vector. Deep 

learning along with neural network is not new at all, both the 

concepts are prevalent around the decades but there was a major 

tailback of unavailability and accessibility of computation power. 

Deep learning is now effectively being used in Natural Language 

Processing with the improvement in techniques like word 

embedding, mobile enablement and focus on attention. The paper 

will discuss about the two popular model of word embedding 

(Word2Vec model) can be used for deep learning and will also 

compare them. The implementation steps of Skip gram model are 

also discusses in the paper. The paper will also discuss 

challenging issues for Word2Vce model.  

    Keywords: Deep Learning, CBOW model, Skip-gram model, 

Word Embedding, Word2Vec,  

I. INTRODUCTION 

Deep learning is a new buzzword in IT industry which is 

basically a type of machine learning that utilizes neural 

networks. The popularity of Deep learning approach is due 

to its success in various applications like speech recognition, 

image classification, Machine Translation, Chatbots to name 

a few. People thought that its application in Natural 

language Application will also reach to the similar success 

benchmark.In the earlier years due to idiosyncrasies in NLP 

deep learning is not successful with the NLP approaches as 

it is quite successful with other applications like image 

processing. However in the past few years researchers have 

applied newer deep learning techniques on NLP applications 

and found success in it. Application of deep learning for 

NLP has promoted use of AI to emulate human perception 

and its usage has moved the technology one step close to the 

human abilities. Natural language processing along with AI 

techniques can be successfully used for the recognition and 

classification of , unstructured data.  
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Deep learning is used now days to improve the effectiveness 

of NLP applications. It has been used in various applications 

like Text Analytics, Voice Recognition, Image Captioning, 

Language Translation and Sentiment Analysis. With the 

recent improvement in the deep learning technique like 

embeddings, a focus on attention, mobile enablement, and 

its appearance in the home has been geared up for Natural 

Language Processing as it had geared up for image 

processing in the past.[1] 

A. Word Embeddings 

It is most popular way of representing document vocabulary. 

The basic purpose of word embeddings is to capture and 

store the context of words with respect to document. It also 

stores semantic and syntactic relation with other words in a 

document. In computational perspective it is basically a 

vector which stores all the contextual, semantics and 

syntactic relations of that word. 

B. Focus On Attention 

One of the latest trends in Deep learning is to utilize 

Attention Mechanism., IlyaSutskever, now the research 

director of OpenAI, mentioned that Attention Mechanisms 

are one of the most exciting advancements, and that they are 

here to stay. In neural networks attention mechanism are 

based on the visual attention that is there in human beings. 

This technique was originally developed to improve the 

performance of encoder and decoder based on Recurrent 

Neural Network used for machine translation. 

C. Mobile Enablement 

The accessibility of internet is now days more and more 

using mobile devices. Mobile devices have restricted 

computational power and resources. Deep learning and 

machine learning need expensive GPU clusters which 

require lot of RAM. These all clusters can be handled easily 

on cloud environment which is not affordable by everyone. 

Hence the requirement is to make deep learning available on 

mobile devices so that versatile applications can be 

managed. There are some recent innovations already in use  

• Apple introduced a core Machine learning framework 

which supports NLP based activities on iOS devices. For 

example – Named entity recognition and language 

identification. 

• A library is developed by Baidu for mobile based deep 

learning capable of working on both iOS and Android. 

• NPE(Neural Processing Engine) developed by 

Qualcomm mobile processors that enables deep learning 

framework for mobile devices. 
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II. WORD EMBEDDINGS AND DEEP LEARNING 

Word Embedding is the robust solution for many NLP 

problems. Basic usage of it is in Predictive modeling based 

on natural language processing. The basic working of word 

embedding relies on converting space vector representation 

into a dense continuous vector space which enables you to 

find out contextual similarity between phrases and words in 

a given document. In general model of bag of words every 

word is uniquely identified which means that there is no 

contextual relationship between two words. For example 

there is a word “bank” and “finance” both will be given 

unique id and by no direct means they can be contextually 

connected. By using Word Embeddings and converting 

sparse word vectors into continuous space we can make it 

convenient for comparing words or phrases. Word 

embedding is a dense feature in a low dimensional vector 

and it has been proved that it is robust solution for most of 

the NLP issues. Word embeddings create a feature 

representation for every word establishing correlation 

among words. Each word is represented in form of vector, 

that represents some features. The idea of word embedding 

was introduced by Mikolovet. al.[2] and from then it has 

become a state of the art for NLP. Various researchers had 

contributed towards this idea and also analyzed its role in 

the field of deep learning. Google also tried its hands on 

word embeddings and developed a group of algorithm 

referred as WordtoVec.WordtoVec algorithm is based on 

neural network concepts and it usestwo models – 

A.  CBOW (Common Bag of Words) Model 

The basic idea of this model is the prediction of context of 

given current word within specific window. The context 

words are being input at input layer and output layer 

contains the current word. There is a middle hidden layer 

also which fixes number of dimensions in which user wants 

to represent word to be projected at output layer. 

In CBOW model each word has been trained against the 

context. The basic working of the model is to ask that given 

the set of context words what will be the suitable missing 

word that would be likely to appear at that place. CBOW 

maximizes the probability of a given word by drawing it 

from its contextual words that’s why it gets difficult for 

some rare words to be handled. For example- Let’s take an 

example sentence with a given context like “When in […] 

speak French”. The CBOW model will tell you that the most 

probable word as per the context is “France”. Words like 

Paris, Italy will not get attention or get less attention as the 

CBOW model is supposed to predict most probable word in 

a given context.CBOW is trained faster in comparison to the 

skip gram and it provides better accuracy for words that are 

frequently used. CBOW handles infrequent words by 

making them part of a context words used to predict the 

target word. Hence low probability is being assigned to the 

infrequent words.[3,4] 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. CBOW model working (Source : Reference 

Number 5) 

B. Skip Gram Model 

This model works by predicting the context words within a 

fixed size of window by given current word. The input layer 

takes current word as input and output layer results into 

context words. The hidden layer specifies the dimension in 

which user wish to project current word provided by the 

input layer. The model trains the context against the word. 

The basic working of the model is to result into the 

contextual words that are likely to appear near the given 

input word at the same time. For example –Opposite to 

CBOW if a given word is “France” the model must predict 

the contextual words with high probability “When in speak 

French”. Skip gram model does not allow low probability 

words to compete with the high probability words. 

Skip gram model is more efficient in representation of rare 

words or phrases and it works quite well with small amount 

of data. Opposite to CBOW, skip-gram predicts the 

contextual words from a given word. In case of two words 

placed side-by-side both the words will have the same 

treatment in terms of minimizing the loss since each word 

will be treated as both the target word and context 

word.[3,4] 

 

 

 

 

 

 

 

Figure 2. Skip Gram model working(Source : Reference 

Number 5) 
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III. STEPS FOR IMPLEMENTING WORD 

EMBEDDINGS 

Word2Vec is considered as a revolution in the field of NLP 

and has given solution to various NLP based applications. 

Skip gram model is considered as better option for the 

implementation of Word Embeddings. The section will 

discuss basic steps for implementation of Skip gram model. 

Python word2vec class is being used for implementation.[6] 

A. Data Preparation 

The very first step for implementation is to prepare data. 

The data that we collect from various sources for NLP 

applications is in general unstructured and dirty. We need to 

clean it by following various steps in order to make it ready 

for processing. The cleaning of unstructured text means 

removing stop words, punctuations and converting text to 

lowercase. After pre-processing next step is to tokenize the 

corpus. 

Let’s take an example – “Scuba Diving and Trekking is fun 

and exciting” 

After tokenizing and stop word removal we will have the 

contents like this – 

 

[“scuba”, “diving”,”trekking”,”fun”,”exciting”] 

 

B. Hyperparameters  

The second step after pre-processing is to define some 

hyperparameters. The purpose of these hyperparameters is 

to define few parameters like window size, embedding size, 

epochs and learning rate. These parameters have significant 

role while processing unstructured content. 

window size – The parameter need to be defined for 

contextual analysis. Context words are those which surround 

the target word. It is said that contextual words are those 

which lie quite near to the target word. But there should be 

some parameter that will decide how near and far words are 

considered for context matching, hence the need of 

window_size parameter is there which decide the context 

window size. If we decide window_size 2 this means that 2 

words both left and right will be considered as context 

words for a given target word. 

Epochs – Epoch is a single pass through your entire dataset 

while training. Number of training epochs need to be 

defined in prior. 

 n – It is basically size of hidden layer. It typically ranges 

from 100 to 300 depending on your vocabulary size. 

Learning_rate - The learning rate controls the amount of 

adjustment made to the weights with respect to the loss 

gradient. 

Following settings code you need to mention in Python – 

settings = { 

 'window_size': 2, # context window +- center 

word  

 'n': 10,  # dimensions of word 

embeddings, also refer to size of hidden layer 

 'epochs': 50, # number of training epochs 

 'learning_rate': 0.01 # learning rate 

} 

C. Generate Training Data  

Next step is to generate training data which means 

converting corpus into one-hot encoded representation for 

the Word2Vec model. The first step is to initialize the object 

of “word2vec” class and later on generate one-hot encoded 

representation for that particular object. 

corpus =”scuba diving trekking fun exciting” 

 

# Initialise object 

w2v = word2vec() 

 

# Numpyndarray with one-hot representation for 

[target_word, context_words] 

 

training_data = w2v.generate_training_data(settings, 

corpus) 

 

By calling generate_training_data() function with settings 

and corpus as a parameter we can generate one-hot encoded 

representation of a given corpus. While training data 

following functions are called – 

1. self.v_count — Length of vocabulary (note that 

vocabulary refers to the number of unique words in the 

corpus) 

2. self.words_list — List of words in vocabulary 

3. self.word_index — Dictionary with each key as word in 

vocabulary and value as index 

4. self.index_word — Dictionary with each key as index 

and value as word in vocabulary 

5. for loop to append one-hot representation for each 

target and its context words 

to training_data using word2onehot function. 

Once the training data is being generated we need to train our 

model by generated training data. 

D. Model Training  

The train function of word2vec class is used to train our 

model – 

# Training 

w2v.train(training_data) 

 

The model contains two weight matrices w1 and w2 one of 

9X10 and 10X9 respectively. These matrices will help in 

back propagation error. The next step is to train our first 

epoch by using first example by passing w_t which 

represents the one-hot vector for target word to the 

forward_pass function, Dot product between w1 and w_t is 

produced h. Then, another dot product using w2 and h is 

produced the output layer u. Lastly, softmax is run to force 

each element to the range of 0 and 1 to give us the 

probabilities for prediction before returning the vector for 

predictiony_pred, hidden layer h and output layer u. 
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Figure 3. Model Training Steps 

defforward_pass(self,x): 

# x is one-hot vector for target word, shape – 9x1 

#Run through first matrix (w1) to get hidden layer – 

10x9 dot 9x1 gives 10x1 

        h=np.dot(self.w1.T,x) 

       # Dot product hidden layer with second matrix(w2) – 

9x10 dot 10x1 gives 9x1 

        u=np.dot(self.w2.T,h) 

       # Run 1x9 through softmax to force each element to 

range of [0,1]- 1x8 

y_c=self.softmax(u) 

  return y_c,h,u 

E. Inference  

Now that we have completed training for 50 epochs, both 

weights (w1 and w2) are now ready to perform inference. 

Once we get the trained set of data with their weights we 

need to look at the vector for a particular work in the 

vocabulary. We can draw following inferences- 

Preparing vector for a word 

With a trained set of weights, the first thing we can do is to 

look at the word vector for a word in the vocabulary. We can 

simply do this by looking up the index of the word against 

the trained weight (w1). In the following example, we look 

up the vector for the word “trekking”. 

>print(w2v.word_vec("trekking")) 

[('trekking', array([ 0.67616509, -0.18737334,  

0.17229338,  0.52344708,  0.4946272 , 

       -0.29398145, -0.90553722,  0.25880929,  0.72747103,  

0.3831458 ]))] 

 

Finding similar words 

Another thing we can do is to find similar words. Even 

though our vocabulary is small, we can still implement the 

function vec_sim by computing the cosine similarity 
between  words. 

> w2v.vec_sim("trekking", 3) 
'trekking', 1.0) 

('diving', 0.4897431442336075) 

('exciting', 0.029074189605917133) 

IV. CHALLENGES AND SOLUTIONS OF WORD 

EMBEDDINGS FOR DEEP LEARNING 

Word embeddings is used to represent text numerically in 

the form of vectors. The purpose of generating these vectors 

is to identify the context in which particular words are being 

used. It is evident now that closely related words are 

represented by similar vector representation. Thus, if models 

are trained with a single word, all similar vectors to this 

word will be similarly understood by the machine.The 

performance of a word embedding model is measured on the 

basis of its performance while dealing with word analogies. 

Hence the efficient system should able to relate ‘sports’ with 

‘football’ or ‘doctor’ with ‘hospital’. There are other 

linguistic issues that pose challenges for word embeddings 

like which are discuss in later sections.[7] 

A. Homographs  

The word embedding algorithms are capable of identifying 

synonyms. The algorithm justifies that there is a cosine 

similarity of 0.63 between the vectors of words” house” and 

“home”.  The vectors for love an like are also expected to be 

similar, but they  have a low cosine similarity of 0.41. The 

reason behind is that like works as a verb, adverb, 

preposition an even noun sometimes.  These words are 

called homographs and there is no means by which we can 

identify these identical words. The requirement is to have a 

common vector for homographs representing all context of a 

particular word. That’s why the vector for like is not as close 

to love as expected. When put into practice, this reality can 

significantly impact on the performance of ML systems 

posing a potential problem for conversational agents and 

text classifiers. 

Solution:The solution for this issue is to train your word 

embedding model using pre-processed text by Part Of 

Speech tagger. By POS tagging in the model it is observed 

that verbs like and love have a cosine 

similarity of 0.72. 
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B. Inflection 

This is another challenging issue for word embedding. Many 

times a particular word exist in their inflected form like find 

and found (inflected) and locate and located (inflected). It is 

observed that find and locate share a cosine similarity of 

0.68 whereas  found and located share a los cosine similarity 

of 0.42. That’s because some word inflections appear less 

frequently than others in certain contexts. As a result, there 

are fewer examples of those ‘less common’ words in context 

for the algorithm to learn from them resulting, therefore, in 

‘less similar’ vectors. For all that, a far bigger issue emerges 

when using languages with a greater level of inflection. No 

matter how large these amounts of training data are, there 

will not be enough examples of the ‘less common’ forms to 

help the algorithm generate useful vectors. 

Solution:To resolve this issue preprocessing for training of 

word embedding models through lemmatization is done. 

The lemmatizer should be able to unify all different forms of  

a words into their canonical  form (root). 

C. Out of Vocabulary Words 

Word2Vec has another challenging issue of Out of 

Vocabulary words. If the model does not have encountered 

any particular word earlier, it will not be in a position to 

make vector for the word. This is a major issue while 

handling noisy and sparse data of Twitter and making vector 

of such OOV words is quite difficult. 

Solution: The solution for this issue can be suggested in 

maintaining a Just In Time corpus of such words  

D. Lack Of Shared Representation For 

Morphologically Similar Words 

This is again a big challenge for word2Vec model because 

in every language there are some words which are 

morphologically similar for example “care” and “careless”. 

Such words though morphologically similar but still it is 

represented individually by Word2Vec. This creates a 

problem for languages which are morphologically rich like 

Hindi, Arabic and German. 

Solution: The words which are morphologically similar 

should be in close proximity in a vector space or the vector 

should define it by using some common flag notation like 

word “careless” derived from “care”. 

E. Pre-initialization  

Pre-trained model in word embeddings does not go well 

with specialized domains. The reason behind is that 

embeddings are trained on massive text corpus which is 

created from Wikepedia and other similar sources. This is 

the reason behind many discrepancies. For example – word 

‘apple’ means fruit in everyday context but it is having 

entirely different context  in electronics field. Such 

differences play an important role while developing any 

models for the analysis of critical data. 

Solution: This issue can be resolved by training models on 

domain –specific datasets. However practically large dataset 

for particular domains are not available in order to draw 

relevant results. The basic aim is to take available pre-trained 

word vectors and accordingly adapt them to your new 

domain data. The resulting representations of words are 

arguably more context-aware than the pre-trained word 

embeddings. 

V. CONCLUSION 

Word embeddings create feature representation of words 

and allows establishing relation among those words. Word 

embedding creation is the basic step of working with text 

because computers and other computational device don’t 

understand text data. Word embedding is suggested as one 

of the solution for deep learning and it is facilitating deep 

learning. The paper had discussed two popular model of 

Word Embedding and also implementation of Skip Gram 

model. Though word embedding had facilitated deep 

learning but there are many challenging issues especially in 

the case of morphologically rich languages. These issues 

need to resolved in order to draw maximum benefit of word 

embeddings. 
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