
International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075 (Online), Volume-8 Issue-11, September 2019

337

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: K13430981119/19©BEIESP

DOI: 10.35940/ijitee.K1343.0981119

Journal Website: www.ijitee.org

Word Embeddings and Its Application in Deep

Learning

Parul Verma, Brijesh Khandelwal

 Abstract: Word embedding in simple term can be defined as

representing text in form of vectors. Vector representations of

text help people in finding similarities, because contextual words

that seem to appear nearby regularly use to appear in close

proximity in vector space. The motivating factor behind such

numerical representation of text corpus is that it can be

manipulated arithmetically just like any other vector. Deep

learning along with neural network is not new at all, both the

concepts are prevalent around the decades but there was a major

tailback of unavailability and accessibility of computation power.

Deep learning is now effectively being used in Natural Language

Processing with the improvement in techniques like word

embedding, mobile enablement and focus on attention. The paper

will discuss about the two popular model of word embedding

(Word2Vec model) can be used for deep learning and will also

compare them. The implementation steps of Skip gram model are

also discusses in the paper. The paper will also discuss

challenging issues for Word2Vce model.

 Keywords: Deep Learning, CBOW model, Skip-gram model,

Word Embedding, Word2Vec,

I. INTRODUCTION

Deep learning is a new buzzword in IT industry which is

basically a type of machine learning that utilizes neural

networks. The popularity of Deep learning approach is due

to its success in various applications like speech recognition,

image classification, Machine Translation, Chatbots to name

a few. People thought that its application in Natural

language Application will also reach to the similar success

benchmark.In the earlier years due to idiosyncrasies in NLP

deep learning is not successful with the NLP approaches as

it is quite successful with other applications like image

processing. However in the past few years researchers have

applied newer deep learning techniques on NLP applications

and found success in it. Application of deep learning for

NLP has promoted use of AI to emulate human perception

and its usage has moved the technology one step close to the

human abilities. Natural language processing along with AI

techniques can be successfully used for the recognition and

classification of , unstructured data.

Manuscript published on 30 September 2019.
*Correspondence Author(s)

Parul Verma, Assistant Professor, Dept. of IT, Amity Institute of
Information Technology, Amity University Uttar Pradesh, Lucknow, U.P.,

India.
Brijesh Khandelwal, Associate Professor, Dept of Comp. Sc, Amity

School of Engineering & Technology, Amity University Chhattisgarh,

Raipur, Chhattisgarh, India.

© The Authors. Published by Blue Eyes Intelligence Engineering and

Sciences Publication (BEIESP). This is an open access article under the
CC-BY-NC-ND license http://creativecommons.org/licenses/by-nc-nd/4.0/

Deep learning is used now days to improve the effectiveness

of NLP applications. It has been used in various applications

like Text Analytics, Voice Recognition, Image Captioning,

Language Translation and Sentiment Analysis. With the

recent improvement in the deep learning technique like

embeddings, a focus on attention, mobile enablement, and

its appearance in the home has been geared up for Natural

Language Processing as it had geared up for image

processing in the past.[1]

A. Word Embeddings

It is most popular way of representing document vocabulary.

The basic purpose of word embeddings is to capture and

store the context of words with respect to document. It also

stores semantic and syntactic relation with other words in a

document. In computational perspective it is basically a

vector which stores all the contextual, semantics and

syntactic relations of that word.

B. Focus On Attention

One of the latest trends in Deep learning is to utilize

Attention Mechanism., IlyaSutskever, now the research

director of OpenAI, mentioned that Attention Mechanisms

are one of the most exciting advancements, and that they are

here to stay. In neural networks attention mechanism are

based on the visual attention that is there in human beings.

This technique was originally developed to improve the

performance of encoder and decoder based on Recurrent

Neural Network used for machine translation.

C. Mobile Enablement

The accessibility of internet is now days more and more

using mobile devices. Mobile devices have restricted

computational power and resources. Deep learning and

machine learning need expensive GPU clusters which

require lot of RAM. These all clusters can be handled easily

on cloud environment which is not affordable by everyone.

Hence the requirement is to make deep learning available on

mobile devices so that versatile applications can be

managed. There are some recent innovations already in use

• Apple introduced a core Machine learning framework

which supports NLP based activities on iOS devices. For

example – Named entity recognition and language

identification.

• A library is developed by Baidu for mobile based deep

learning capable of working on both iOS and Android.

• NPE(Neural Processing Engine) developed by

Qualcomm mobile processors that enables deep learning

framework for mobile devices.

https://www.openaccess.nl/en/open-publications
http://www.ijitee.org/
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijitee.K1343.0981119&domain=www.ijitee.org

Word Embeddings and Its Application in Deep Learning

338

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: K13430981119/19©BEIESP

DOI: 10.35940/ijitee.K1343.0981119

Journal Website: www.ijitee.org

II. WORD EMBEDDINGS AND DEEP LEARNING

Word Embedding is the robust solution for many NLP

problems. Basic usage of it is in Predictive modeling based

on natural language processing. The basic working of word

embedding relies on converting space vector representation

into a dense continuous vector space which enables you to

find out contextual similarity between phrases and words in

a given document. In general model of bag of words every

word is uniquely identified which means that there is no

contextual relationship between two words. For example

there is a word “bank” and “finance” both will be given

unique id and by no direct means they can be contextually

connected. By using Word Embeddings and converting

sparse word vectors into continuous space we can make it

convenient for comparing words or phrases. Word

embedding is a dense feature in a low dimensional vector

and it has been proved that it is robust solution for most of

the NLP issues. Word embeddings create a feature

representation for every word establishing correlation

among words. Each word is represented in form of vector,

that represents some features. The idea of word embedding

was introduced by Mikolovet. al.[2] and from then it has

become a state of the art for NLP. Various researchers had

contributed towards this idea and also analyzed its role in

the field of deep learning. Google also tried its hands on

word embeddings and developed a group of algorithm

referred as WordtoVec.WordtoVec algorithm is based on

neural network concepts and it usestwo models –

A. CBOW (Common Bag of Words) Model

The basic idea of this model is the prediction of context of

given current word within specific window. The context

words are being input at input layer and output layer

contains the current word. There is a middle hidden layer

also which fixes number of dimensions in which user wants

to represent word to be projected at output layer.

In CBOW model each word has been trained against the

context. The basic working of the model is to ask that given

the set of context words what will be the suitable missing

word that would be likely to appear at that place. CBOW

maximizes the probability of a given word by drawing it

from its contextual words that’s why it gets difficult for

some rare words to be handled. For example- Let’s take an

example sentence with a given context like “When in […]

speak French”. The CBOW model will tell you that the most

probable word as per the context is “France”. Words like

Paris, Italy will not get attention or get less attention as the

CBOW model is supposed to predict most probable word in

a given context.CBOW is trained faster in comparison to the

skip gram and it provides better accuracy for words that are

frequently used. CBOW handles infrequent words by

making them part of a context words used to predict the

target word. Hence low probability is being assigned to the

infrequent words.[3,4]

Figure 1. CBOW model working (Source : Reference

Number 5)

B. Skip Gram Model

This model works by predicting the context words within a

fixed size of window by given current word. The input layer

takes current word as input and output layer results into

context words. The hidden layer specifies the dimension in

which user wish to project current word provided by the

input layer. The model trains the context against the word.

The basic working of the model is to result into the

contextual words that are likely to appear near the given

input word at the same time. For example –Opposite to

CBOW if a given word is “France” the model must predict

the contextual words with high probability “When in speak

French”. Skip gram model does not allow low probability

words to compete with the high probability words.

Skip gram model is more efficient in representation of rare

words or phrases and it works quite well with small amount

of data. Opposite to CBOW, skip-gram predicts the

contextual words from a given word. In case of two words

placed side-by-side both the words will have the same

treatment in terms of minimizing the loss since each word

will be treated as both the target word and context

word.[3,4]

Figure 2. Skip Gram model working(Source : Reference

Number 5)

Input Projection Output

w(t-2)

w(t-1)

w(t+1)

w(t+2)

SUM w(t)

Input Output Projection

w(t)
w(t-1)

w(t-2)

w(t+1)

w(t+2)

http://www.ijitee.org/

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075 (Online), Volume-8 Issue-11, September 2019

339

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: K13430981119/19©BEIESP

DOI: 10.35940/ijitee.K1343.0981119

Journal Website: www.ijitee.org

III. STEPS FOR IMPLEMENTING WORD

EMBEDDINGS

Word2Vec is considered as a revolution in the field of NLP

and has given solution to various NLP based applications.

Skip gram model is considered as better option for the

implementation of Word Embeddings. The section will

discuss basic steps for implementation of Skip gram model.

Python word2vec class is being used for implementation.[6]

A. Data Preparation

The very first step for implementation is to prepare data.

The data that we collect from various sources for NLP

applications is in general unstructured and dirty. We need to

clean it by following various steps in order to make it ready

for processing. The cleaning of unstructured text means

removing stop words, punctuations and converting text to

lowercase. After pre-processing next step is to tokenize the

corpus.

Let’s take an example – “Scuba Diving and Trekking is fun

and exciting”

After tokenizing and stop word removal we will have the

contents like this –

[“scuba”, “diving”,”trekking”,”fun”,”exciting”]

B. Hyperparameters 

The second step after pre-processing is to define some

hyperparameters. The purpose of these hyperparameters is

to define few parameters like window size, embedding size,

epochs and learning rate. These parameters have significant

role while processing unstructured content.

window size – The parameter need to be defined for

contextual analysis. Context words are those which surround

the target word. It is said that contextual words are those

which lie quite near to the target word. But there should be

some parameter that will decide how near and far words are

considered for context matching, hence the need of

window_size parameter is there which decide the context

window size. If we decide window_size 2 this means that 2

words both left and right will be considered as context

words for a given target word.

Epochs – Epoch is a single pass through your entire dataset

while training. Number of training epochs need to be

defined in prior.

 n – It is basically size of hidden layer. It typically ranges

from 100 to 300 depending on your vocabulary size.

Learning_rate - The learning rate controls the amount of

adjustment made to the weights with respect to the loss

gradient.

Following settings code you need to mention in Python –

settings = {

 'window_size': 2, # context window +- center

word

 'n': 10, # dimensions of word

embeddings, also refer to size of hidden layer

 'epochs': 50, # number of training epochs

 'learning_rate': 0.01 # learning rate

}

C. Generate Training Data 

Next step is to generate training data which means

converting corpus into one-hot encoded representation for

the Word2Vec model. The first step is to initialize the object

of “word2vec” class and later on generate one-hot encoded

representation for that particular object.

corpus =”scuba diving trekking fun exciting”

Initialise object

w2v = word2vec()

Numpyndarray with one-hot representation for

[target_word, context_words]

training_data = w2v.generate_training_data(settings,

corpus)

By calling generate_training_data() function with settings

and corpus as a parameter we can generate one-hot encoded

representation of a given corpus. While training data

following functions are called –

1. self.v_count — Length of vocabulary (note that

vocabulary refers to the number of unique words in the

corpus)

2. self.words_list — List of words in vocabulary

3. self.word_index — Dictionary with each key as word in

vocabulary and value as index

4. self.index_word — Dictionary with each key as index

and value as word in vocabulary

5. for loop to append one-hot representation for each

target and its context words

to training_data using word2onehot function.

Once the training data is being generated we need to train our

model by generated training data.

D. Model Training 

The train function of word2vec class is used to train our

model –

Training

w2v.train(training_data)

The model contains two weight matrices w1 and w2 one of

9X10 and 10X9 respectively. These matrices will help in

back propagation error. The next step is to train our first

epoch by using first example by passing w_t which

represents the one-hot vector for target word to the

forward_pass function, Dot product between w1 and w_t is

produced h. Then, another dot product using w2 and h is

produced the output layer u. Lastly, softmax is run to force

each element to the range of 0 and 1 to give us the

probabilities for prediction before returning the vector for

predictiony_pred, hidden layer h and output layer u.

https://www.openaccess.nl/en/open-publications
http://www.ijitee.org/
https://en.wikipedia.org/wiki/Softmax_function?source=post_page---------------------------

Word Embeddings and Its Application in Deep Learning

340

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: K13430981119/19©BEIESP

DOI: 10.35940/ijitee.K1343.0981119

Journal Website: www.ijitee.org

Figure 3. Model Training Steps

defforward_pass(self,x):

x is one-hot vector for target word, shape – 9x1

#Run through first matrix (w1) to get hidden layer –

10x9 dot 9x1 gives 10x1

 h=np.dot(self.w1.T,x)

 # Dot product hidden layer with second matrix(w2) –

9x10 dot 10x1 gives 9x1

 u=np.dot(self.w2.T,h)

 # Run 1x9 through softmax to force each element to

range of [0,1]- 1x8

y_c=self.softmax(u)

 return y_c,h,u

E. Inference 

Now that we have completed training for 50 epochs, both

weights (w1 and w2) are now ready to perform inference.

Once we get the trained set of data with their weights we

need to look at the vector for a particular work in the

vocabulary. We can draw following inferences-

Preparing vector for a word

With a trained set of weights, the first thing we can do is to

look at the word vector for a word in the vocabulary. We can

simply do this by looking up the index of the word against

the trained weight (w1). In the following example, we look

up the vector for the word “trekking”.

>print(w2v.word_vec("trekking"))

[('trekking', array([0.67616509, -0.18737334,

0.17229338, 0.52344708, 0.4946272 ,

 -0.29398145, -0.90553722, 0.25880929, 0.72747103,

0.3831458]))]

Finding similar words

Another thing we can do is to find similar words. Even

though our vocabulary is small, we can still implement the

function vec_sim by computing the cosine similarity
between words.

> w2v.vec_sim("trekking", 3)
'trekking', 1.0)

('diving', 0.4897431442336075)

('exciting', 0.029074189605917133)

IV. CHALLENGES AND SOLUTIONS OF WORD

EMBEDDINGS FOR DEEP LEARNING

Word embeddings is used to represent text numerically in

the form of vectors. The purpose of generating these vectors

is to identify the context in which particular words are being

used. It is evident now that closely related words are

represented by similar vector representation. Thus, if models

are trained with a single word, all similar vectors to this

word will be similarly understood by the machine.The

performance of a word embedding model is measured on the

basis of its performance while dealing with word analogies.

Hence the efficient system should able to relate ‘sports’ with

‘football’ or ‘doctor’ with ‘hospital’. There are other

linguistic issues that pose challenges for word embeddings

like which are discuss in later sections.[7]

A. Homographs

The word embedding algorithms are capable of identifying

synonyms. The algorithm justifies that there is a cosine

similarity of 0.63 between the vectors of words” house” and

“home”. The vectors for love an like are also expected to be

similar, but they have a low cosine similarity of 0.41. The

reason behind is that like works as a verb, adverb,

preposition an even noun sometimes. These words are

called homographs and there is no means by which we can

identify these identical words. The requirement is to have a

common vector for homographs representing all context of a

particular word. That’s why the vector for like is not as close

to love as expected. When put into practice, this reality can

significantly impact on the performance of ML systems

posing a potential problem for conversational agents and

text classifiers.

Solution:The solution for this issue is to train your word

embedding model using pre-processed text by Part Of

Speech tagger. By POS tagging in the model it is observed

that verbs like and love have a cosine

similarity of 0.72.

In
p

u
t Laye

r

np.dot Weight 1 =

 H
id

d
en

 Layer

np.dot Weight 2
=

O
u

tp
u

t Layer
softmax

P
red

ictio
n

10x9 1x9 1x9 1x10 9x10 1x9

Word2Vec

http://www.ijitee.org/
https://en.wikipedia.org/wiki/Cosine_similarity?source=post_page---------------------------

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075 (Online), Volume-8 Issue-11, September 2019

341

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: K13430981119/19©BEIESP

DOI: 10.35940/ijitee.K1343.0981119

Journal Website: www.ijitee.org

B. Inflection

This is another challenging issue for word embedding. Many

times a particular word exist in their inflected form like find

and found (inflected) and locate and located (inflected). It is

observed that find and locate share a cosine similarity of

0.68 whereas found and located share a los cosine similarity

of 0.42. That’s because some word inflections appear less

frequently than others in certain contexts. As a result, there

are fewer examples of those ‘less common’ words in context

for the algorithm to learn from them resulting, therefore, in

‘less similar’ vectors. For all that, a far bigger issue emerges

when using languages with a greater level of inflection. No

matter how large these amounts of training data are, there

will not be enough examples of the ‘less common’ forms to

help the algorithm generate useful vectors.

Solution:To resolve this issue preprocessing for training of

word embedding models through lemmatization is done.

The lemmatizer should be able to unify all different forms of

a words into their canonical form (root).

C. Out of Vocabulary Words

Word2Vec has another challenging issue of Out of

Vocabulary words. If the model does not have encountered

any particular word earlier, it will not be in a position to

make vector for the word. This is a major issue while

handling noisy and sparse data of Twitter and making vector

of such OOV words is quite difficult.

Solution: The solution for this issue can be suggested in

maintaining a Just In Time corpus of such words

D. Lack Of Shared Representation For

Morphologically Similar Words

This is again a big challenge for word2Vec model because

in every language there are some words which are

morphologically similar for example “care” and “careless”.

Such words though morphologically similar but still it is

represented individually by Word2Vec. This creates a

problem for languages which are morphologically rich like

Hindi, Arabic and German.

Solution: The words which are morphologically similar

should be in close proximity in a vector space or the vector

should define it by using some common flag notation like

word “careless” derived from “care”.

E. Pre-initialization

Pre-trained model in word embeddings does not go well

with specialized domains. The reason behind is that

embeddings are trained on massive text corpus which is

created from Wikepedia and other similar sources. This is

the reason behind many discrepancies. For example – word

‘apple’ means fruit in everyday context but it is having

entirely different context in electronics field. Such

differences play an important role while developing any

models for the analysis of critical data.

Solution: This issue can be resolved by training models on

domain –specific datasets. However practically large dataset

for particular domains are not available in order to draw

relevant results. The basic aim is to take available pre-trained

word vectors and accordingly adapt them to your new

domain data. The resulting representations of words are

arguably more context-aware than the pre-trained word

embeddings.

V. CONCLUSION

Word embeddings create feature representation of words

and allows establishing relation among those words. Word

embedding creation is the basic step of working with text

because computers and other computational device don’t

understand text data. Word embedding is suggested as one

of the solution for deep learning and it is facilitating deep

learning. The paper had discussed two popular model of

Word Embedding and also implementation of Skip Gram

model. Though word embedding had facilitated deep

learning but there are many challenging issues especially in

the case of morphologically rich languages. These issues

need to resolved in order to draw maximum benefit of word

embeddings.

REFERENCES

1. Jacob Perkins, How Deep Learning Supercharges Natural Language
Processing, TheNewsTrack, 20 Mar 2018

2. Tomas Mikolov, Greg Corrado, Kai Chen & Jeffrey Dean. Efficient

Estimation of Word Representations in Vector Space. September
2013. https://arxiv.org/pdf/1301.3781.pdf

3. Elvis,Deep Learning for NLP: An Overview of Recent Trends,

medium.com, August 24, 2018
4. DhruvilKarani, Introduction to Word Embedding and Word2Vec,

towardsdatascience, 01 September, 2018

5. A Beginner's Guide to Word2Vec and Neural Word Embeddings,
skymind.ai

6. Dereck Chia, An implementation guide to Word2Vec using NumPy
and Google Sheets, towardsdatascience.com, December 6, 2018

7. ParsaGhaffari, Word Embeddings and their challenges,

blog.aylien.com, 15 June, 2016

AUTHORS PROFILE

Dr. Parul Verma is working as an Assistant Professor

in Information Technology department in Amity

University, Lucknow. She had completed her Ph.D. in

Computer Science in the year 2012 and has 12+ years

of teaching experience. There are more than 35 papers

to her credit in the International and National journals

and conferences. Her research interests are Natural

Language Processing, Web Mining, Word Sense Disambiguation, Semantic

Web andIoT. She is a member of Review Board of several International

Journals. She is nominated as a member of Technical Program Committee

and Organizing Committee of many International Conferences. She is also

a member of many International and National bodies like IAENG, IACSIT,

Internet Society, ACM and CSI.

Dr. Brijesh Khandelwal has more than 25 years of

encyclopedic academic experience in Computer

Science, Management and Insurance domain.

Currently, he is working as Associate Professor and

Head- Department of Computer Science, Amity

School of Engineering and Technology, Amity

University Chhattisgarh, Raipur. Dr. Khandelwal has

rich & diverse experience in academia and has over 30 publications in

International/ National Journals & Conferences of repute. He is also

member of Editorial/ Review Board of several Journals of repute.

Dr. Khandelwal did MCA from University of Lucknow, Lucknow in year

1994. In 2001, he became Sun Certified Programmer with Sun

Microsystems. In 2007 he was awarded Doctorate in Philosophy in

Appllied Economics from University of Lucknow, Lucknow. He did MBA

in 2010 from Punjab Technical University. In 2010 he became licentiate in

Life Insurance from Insurance Institute of India, Mumbai. He also got

awarded Doctorate in Philosophy in the subject of Computer Science from

Sri Venkateshwara University, Gajraula, U.P. in year 2017.

https://www.openaccess.nl/en/open-publications
http://www.ijitee.org/
https://arxiv.org/pdf/1301.3781.pdf
http://blog.aylien.com/author/parsa/

