Design of Bit Slice Processor based on Reconfigurable Approximate Carry Look-Ahead Adder

Rangeetha S, Sharmila devi S, Adline Jancy Y

Abstract: A highly efficient approximate addition plays a vital role in arithmetic operations. A special addition mechanism employed in the proposed work consists of both exact and approximate modes of operation suitable for both error tolerant and exact applications. The proposed adder is more area and power efficient compared with other conventional approximate carry look-ahead adders. It is constructed by splitting the input into two parts namely, approximate part and augmenting part. If both produce carry it will be exact output, while the carry produced by approximate part will be imprecise. Based on this mechanism an efficient reconfigurable carry look-ahead adder is designed and applied to a bit-slice processor. Bit slicing is technique to construct a processor by using n-bit CPU. The error rate is also minimized in the proposed technique by 10% compared to existing designs. Compared with conventional approximate adder, the proposed reconfigurable approximate adder produce better results in terms of area and power.

Keywords- Approximate multiplier, reconfigurable approximate carry look-ahead adder (RAP-CLA), Bit-slice processor, operating modes.

I. INTRODUCTION

Addition is an essential process applied in various signal processing algorithms. High speed adders normally occupy more area, with more power consumption. Therefore low-power and flexible adder design plays a vital part in lowpower arithmetic and logic units [1]. There has been number of work carried out on low-power adder at various levels in VLSI design flow. The overall performance of the entire arithmetic unit depends mainly on the adder performance because, the adder can perform other operations such as subtraction, multiplication and division which is more power hungry. Furthermore, it is affected with the critical path delay in its propagation part. Hence, enhancement of various parameters of the adder is a major design task. One of the parameters, either area or speed needs to be compromised to better the other. There is always a conflicting interest between these parameters. In low-power adder design, many existing work are done based on approximate computing to minimize the area and power consumption [2]. This is suitable for various multimedia, signal and image processing applications. Besides that, an easy way to design low power

Revised Manuscript Received on July 08, 2019.

Rangeetha, Assistant Professor, Ramakrishna college of Engineering college, Coimbatore, India <u>bitmist2017@gmail.com</u>

Sharmila devi Assistant Professor, Ramakrishna college of Engineering college, Coimbatore, India

Adline Jancy Y Assistant Professor, Ramakrishna college of Engineering college, Coimbatore, India

multiplier architecture is by creating power efficient full adder design in the adder tree. Approximate addition is another way to reduce the computational complexity [3]. Furthermore, the reduction of the power in adders is also possible through various bypassing designs where the number of zeros is more in the operands. There are various proposed adders which are fully approximate and may be applied only in error tolerant applications such as signal and image processing. At the same time, some of these designs have an equal level of difference from the actual output, i.e., during the operation their accuracy cannot be varied. Runtime accuracy is an important parameter to be considered in various high quality system operations [4]-[5]. Thus by maintaining the accuracy at the output level, the total delay and power is minimized resulting in high energy efficiency. Additionally, there are certain applications were the bit sliced processors with multiple CPU units perform both approximate and exact addition to switch between two different modes of operation. This is achieved by incorporating the correction circuitry with the approximate design [6]. In certain cases additional clock cycle is required for correcting the errors to produce exact output.

In Section II the proposed reconfigurable approximate CLA and its working is described. The operation of bit slice processor is discussed in Section III and the accuracy analysis based on its error probability is discussed in Section IV. Evaluation results are analyzed in Section V. Paper is concluded in Section VI along with its future possible enhancement.

II. PROPOSED RECONFIGURABLE APPROXIMATE CLA ROCEDURE FOR PAPER SUBMISSION

A carry-look ahead adder (CLA) is used to minimize the carry propagation delay applied in various <u>digital systems</u>. A carry-lookahead adder improves the performance of the addition circuit by minimizing the amount of total time necessary to calculate carry bits. It can be analyzed with the basic ripple carry adder design in which each full adder can perform the operation only if the previous stage has generated the carry. As the number of bits increases, the overall delay increases proportionally. The main advantage exists in carry look-ahead adder is that it calculates certain operation without waiting for the carry output from the previous part is generated.

Published By: Blue Eyes Intelligence Engineering & Sciences Publication

Retrieval Number: J104808810S19/2019©BEIESP DOI: 10.35940/ijitee.J1048.08810S19

Fig.1 Full adder design of Carry look-ahead adder and its truth table

Fig.1 shows the basic full adder design used in carry look ahead adder and its truth table. In order to minimize the propagation delay the full adder is divided into sub segments namely propagate and generate part described as,

Propagate and generate part produces the partial result even if the carry from the previous stage is not generated or received making partial operation of the adder to be performed. Once the carry is received then the remaining operation is performed in order to generate its corresponding sum and carry bits. The table above gives the combination for which the carry generation and propagation is processed.

The proposed reconfigurable approximate multiplier consists of both exact and approximate modes of operation suitable for both error tolerant and exact applications. The proposed adder is more area and power efficient compared with other conventional approximate carry look-ahead adders. It is constructed by splitting the input into two parts namely, approximate part and augmenting part. If both produce carry it will be exact output, while the carry produced by approximate part will be imprecise. Based on this mechanism an efficient reconfigurable carry look-ahead adder is designed.

$$C_{i+1} = \left(\sum_{j=i-W+1}^{i} G_j(\prod_{k=j+1}^{i-1} P_k)\right) + \left(\sum_{j=0}^{i-W} G_j(\prod_{k=j+1}^{i-1} P_k) + C_{in} \prod_{j=0}^{i} P_j\right)$$
(3)

The equation(3) describes the carry look-ahead adder divided into 2 parts. If both the part in the equation generates the carry then the produced carry is exact one, whereas if only error tolerant part is used then the produced carry is inaccurate.

It is obvious that producing inaccurate carry Ci+1 is faster and consumes less power compared to calculating the same Ci+1 accurately. Based on this division, two different accurate and approximate operating states are analyzed for the proposed reconfigurable approximate carry look-ahead adder. Thus, compared to the existing methods with look-ahead architecture, additionally one multiplexer is added in the design for generating carry output Ci+1. The inputs of this MUX are inaccurate and perform the operation at very high speed. The mode of operation in the circuit determines the generation of the carry output in the accurate or inaccurate mode. As an example, the logical architecture for generating C4 in the proposed architecture which is called RAP-CLA is shown in Fig. 2. To eliminate unwanted power consumption of the circuit of the inaccurate part, the power gating mechanism is employed. Based on the PMOS transistor connected to Vdd the power gating is achieved in the RAP-CLA thus minimizing the overall power consumption during the operation of approximate part. By adopting the similar RAP-CLA throughout the adder part the overall power can be further optimized. This also leads to the higher deviation in its output resulting in more error. It is previously done in various ETA adders [8]. The accuracy may be increased by adding the accurate part along with the approximate one. Depending on the accuracy need in various applications the level can be varied by adopting the inaccurate design where ever needed. The adder can be partitioned based on this mechanism in order to compensate accuracy to the overall area and power or vice versa.

III. RAP-CLA BASED BIT-SLICE PROCESSOR

Bit slicing is a technique to create a processor from modules of processors of smaller bit width, for increasing the word length; theoretically to make an arbitrary n bit CPU. Each of these modules processes one bit operand field or slice of an operand. The collection of processing components would have the ability to process the chosen full word length of a particular software design. Bit-slicing more or less disappeared due to the onset of the microprocessor. Recently it is used in Arithmetic Logic Units for quantum computers, and is used as a software technique.

Published By:

& Sciences Publication

International Journal of Innovative Technology and Exploring Engineering (IJITEE) ISSN: 2278-3075, Volume-8, Issue-10S, August 2019

Fig.3 Block Diagram of Bit-sliced Processor

Fig.3 shows the block diagram of a bit-sliced processor. In a bit sliced processor, each module contains an arithmetic-logic unit usually capable of handling a 4 bit field. By combining two or more identical modules, it is possible to build a processor can be built that can handle multiples of this value, such as 8 bits, 12 bits, 16 bits, 20 bits, and so on. Each module is referred as a slice. The control lines for all the slices are connected in parallel to share the processing work evenly. For example, two 4-bit ALU chips could be arranged side by side, with control lines between them, to form an 8-bit ALU (result need not be power of two, e.g. three 1-bit can make a 3-bit ALU,^[2] thus 3-bit (or n-bit) CPU, while such hasn't been used in volume). Four 4-bit ALU chips could be used to build a 16-bit ALU. It would take eight chips to build a 32-bit word ALU. The designer could add as many slices as required to operate increasingly longer word lengths. A micro sequencer or control ROM would be used to execute logic to provide data and control signals to control the function of component ALUs.

IV. ERROR ANALYSIS AND ACCURACY OF RAP-CLA

Error analysis and error minimization methods of truncated design adders have been frequently analyzed in various existing papers. Certain variable error minimization methods significantly improve the accuracy of truncated adders by reducing errors. There are certain programmable truncated adders used to minimize area based on truncation column selection bit.

The proposed adder presented in [9] is considered in the two different modes of with and without error reduction unit whose methodology are discussed in [9]. For this section, the error analysis is studied in the case of an 8-bit adder under various row and column sizes. In the structure of [9], column size is used only in the form of 2k. It is also proved that he proposed adder design in [9] has produced maximum accuracy mainly when it is added with the error correction unit. In the considered column sizes, the proposed RAP-CLA has the better error distance and mean error distance with the addition of error reduction circuit. More than 25% of error is minimized compared to its conventional designs. Other parameters like normalized error distance and mean relative error distance is also better compared with the previous methods. These values are very much suitable in various error tolerant applications in signal processing and image processing domains.

There are various other parameters also need to be analyzed for error probability.

• Complete error (CE): Variation between the original and the obtained value.

• Accuracy (AR): In the objective of the error-optimized design, the correctness of an adder output is used to indicate how "exact" the output of an adder is for a specific input.

•Threshold set level (TSL): Certain errors are assumed to exist at the result of an ETA, the correctness of an acceptable output should be "greater" (more than a set value) to achieve the desirable output of the entire system. Minimum acceptable value is just that set value which needs to be met. The result achieved whose accuracy is more than the minimum set accuracy is called desired result.

• Probability of Acceptance (POC): It is the overall probability of the adder for an entire application with all possible cases.

V. EVALUATION RESULTS

 TABLE I. Resource Utilization of the proposed adder along with existing adders.

Design Summary	PASTA	RCA	CLA(EXACT)	CLA(RA)
LUT	59	9	9	7
Slices	93	15	15	13
Power(W)	0.92	0.92	0.014	0.92
Delay(ns)	5.429	12.142	11.986	11.074

It is inferred that the Table I shows that various parameters like LUT, Slices, power and delay have been analyzed and the comparative results of proposed reconfigurable approximate furnish the best performance compared with existing adders.

It is inferred that the Fig.4 shows that various parameters like LUT, Slices, power and delay have been analyzed and the comparative results of adders furnish the best results

compared to its existing methods in terms of area utilization and delay analysis.

& Sciences Publication

Blue Eyes Intelligence Engineering

Published By:

Retrieval Number: J104808810S19/2019©BEIESP DOI: 10.35940/ijitee.J1048.08810S19

The Fig.5 shows the output result of the design summary window obtained in Xilinx ISE. It contains the total number of various hardware resource utilized for the new proposed technique for approximate carry look-ahead adder shown in the Table 1. The design is synthesized using Virtex-4 xc4vlx25 Xilinx FPGA.

From the Fig.6 shows the power report of the new proposed design obtained in Xilinx ISE. It contains the total power consumed for the proposed RAP-CLA adder as mentioned in the Table 1. A final observation is that compared with existing design the proposed adder results in better area and delay. It is further improved in truncated design.

+D # X	100	E Design Overview	Design Goat	Belanced		+Routing Results:	Al Signal	Completely Routed	
Next-Wig Trajementation Image: Wig Trajementation Imag		Surrmary	Design Strategy:	Xinx Cefe/It farioties	0	• Timing Constraint	N Al Consti	wints Net	
		Module Level Utilization	Invironment	Suntem Settions		+Final Timing Score	e O Cirros	Report	
		Timing Constraints							
 □ el+b25-12855 □ el+b25-12855<!--</td--><td>0</td><td>C Clock Report</td><td colspan="5">Device Ublication Summary</td><td></td><td>1</td>	0	C Clock Report	Device Ublication Summary						1
		Static Timing 👘	Logic Utilization		Used	Available	Utilization	Note(s)	
	\$12	Errors and Warrings Parser Messages	Number of Skite Latches		7	21,904	2%		
	M	Synthesis Messages	Number of 4 input UUTs		-0	21,504	1%	0	
	-	Translation Messages	Number of occupied Sloe		27	10,753	1%		
		Place and Route Messages	Number of Sices conta	ining only related logic	27	27	10%	1	
		Timing Messages	Number of Sices canta	ining unvelated logic	0	27	0%		
the Designation	Bitges Messages Messages		Total Number of Hinput L	UTS		21,504	1%		
(2) remaining		Detailed Reports Synthesis Report	Number used as logic		- 0				
ocesses radia, 4 jus, Bd			Number used as a rout	e-firu	1				
Dis Implement Design		Design Properties	Tamber of bonded 2088		1	448	6%	ŭ.	
E CO Translate		Enable Message Filtering	308 Flip Flops		6	5	1	3	
Map Map Map		Optional Design Summary Contents	Number of BUFG/BUFGCT	Ris	1	12	3%		
B (2) Generate Post-Place &		Show Failing Constraints	Number used as BUPG		1		1		
Analyze Timing / Ros.		- III Show Warnings	Average Fenout of Non-C	Clock Nets	2.91				
Analyze Power Distrib									
D. Generate Doch Blace &			- 173		Performance Sur	nmary			
et 💐 Design 🖸 Pies 🚺 Libraries	Σ	Design Summary (Indemented)		radx_4_irs	.¥				
									2

Fig.5 Design summary of Full length LRRS Multiplier

under such and der anniheliter funderen finn	e View)		the second second			0000
e Edit View Toola Help						28
- σ Q 10						
charger X A	8 C D	E F C	H IJ	K L 8	N	
Dig Press Lenge DisA Actin Paris Sinney Circletons Line Disa	Uttest D pc4xld3 is size Commonol ↓ Typcal ↓ In rode 12 tre 50 tre 50 tre 50	Drobe Oreset (W) Used pc 0.000 40 pc 0.000 31 pc 0.200 32 pc 0.200 32	Available Ulification (2) 27550 (2) 27550 (2) 445 (2)	Stappy Summary Ends Source Values Careet (4) Cont 1.200 0.511 Cotaux 2.500 0.501 Cotaux 2.500 0.501 Cotaux 2.500 0.501 Sacyle Flower (97) 12200	Spanic Glassoner (J) 0.014 0.117 0.000 0.016 0.000 0.016 0.000 0.016 0.000 0.016 0.000 0.016 0.000 0.016 0.000 0.016	
Data © Control Sel/Reset - 0.0000 Photo: P	Actor TTON v10.024246		KI KA		-	
Default Coloutined	awer Analysis is up to date. I mouse over the attetok for more de	taled BRAM utilization.				
a 🔀 14	de Vew					
domains will default to zero whi design. To avoid this warning. 1. The proper timing constrain and load the nextly generate and load the nextly generate frequencies 3. The clock frequency for clo XFover Analyzer GUT and the XFover Analyzer GUT and the	th may under-estimate provide at least one o is (FERIOD) for clocks f PCF file into RHOwer tied WCD or SAIF file iks in the "By Type -> a applying "Opdate Row	the power for this f the following: (re-implement design Amolyrer) indicating clock Clocks" view in the er Analysia"				
à						
Canacle Report Werning Error						

Fig.6. Power analysis of Full length LRRS Multiplier

Name	Value	1,999,995 ps 1,999,996 ps 1,999,997 ps 1,999,998 ps 1,999,999 ps
🕨 📑 a[15:0]	10010011111	100100111111111
b[15:0]	00011001100	0001100110001111
🕨 📑 sel[2:0]	000	000
Image: Second	00000000000	000000000000000000000000000000000000000
▶ 🍓 p1[31:0]	00000000000	000000000000000000000000000000000000000
▶ 📑 p2[31:0]	00000000000	000000000000000000111101001110000
▶ 📑 p3[31:0]	00001110110	00001110110001101001001110001
▶ 號 p4[31:0]	00000000000	000000000000000000000000000000000000000
▶ 號 p5[31:0]	00000000000	000000000000000000000000000000000000000
▶ 號 p6[31:0]	00000000000	000000000000000000000000000000000000000
▶ 號 p7[31:0]	00000000000	00000000000000001110111001110000
▶ 📑 p8[31:0]	00000000000	000000000000000000000000000000000000000
🕨 🔣 k1[15:0]	10001010011	1000101001110000
🕨 🔣 k2[15:0]	10011011111	10011011111111
🕨 📷 k3[15:0]	00010001100	0001000110001111
🕨 駴 k4[15:0]	11101110011	1110111001110000
		X1: 2,000,000 ps

Fig. 7 Simulation Results for ALU for Addition operation

Name	Value	1,999,995 ps 1,999,996 ps 1,999,997 ps 1,999,998 ps 1,999,999 ps
🕨 🃑 a[15:0]	00101001110	0010100111000101
🕨 🃑 b[15:0]	10000001101	1000000110100101
▶ 🐳 sel[2:0]	011	011
▶ 📑 alu_out[31:0]	00000000000	000000000000000000000000000000000000000
▶ 🔩 p1[31:0]	00000000000	000000000000000000000000000000000000000
▶ 🔩 p2[31:0]	00000000000	000000000000000000000000000000000000000
▶ 🔩 p3[31:0]	00010101001	0001010100100110011000011111001
▶ 🛃 p4[31:0]	00000000000	000000000000000000000000000000000000000
▶ 🔩 p5(31:0)	00000000000	000000000000000000000000000000000000000
▶ 🔩 p6[31:0]	00000000000	000000000000000000000000000000000000000
▶ 🍢 p7(31:0)	00000000000	00000000000000001111111001111010
▶ 號 p8(31:0)	00000000000	000000000000000000000000000000000000000
🕨 🍓 k1(15:0)	10101000011	10101000001100000
🕨 🍓 k2[15:0]	10101001111	1010100111100101
🕨 🎆 k3[15:0]	00000001100	0000000110000101
🕨 👹 k4[15:0]	11111110011	11111110011111010
		X1: 2,000,000 ps

Fig. 8 Simulation Results for ALU for X-OR operation

The Fig. 7 and 8 and shows the output result of the ALU in the bit-slice processor for addition and X-OR operation. A and B is the input operand with SEL as the selection input. P1 to P8 is the output of different operation and ALU OP is the output of the bit-sliced processor.

VI. CONCLUSION

A high-performance yet power-efficient reconfigurable approximate carry look-ahead adder is proposed. The adder achieved the possibility of switching between the approximate and exact operating modes making it suitable for both error-tolerant and accurate applications. The overall design of the proposed adder was based on some logical modifications to the structure of the conventional CLA. To analyze the efficiency of the proposed design, its design parameters were compared to those of some implemented reconfigurable approximate adders. The parameters which included delay, power, energy-delay-product, and area were evaluated. The results are better compared with the existing methods. In the future, the use of this addition approach in image processing and other signal processing applications can be analyzed.

REFERENCES

- 1. B. K. Mohanty and S. K. Patel, "Area-Delay-Power Efficient Carry-Select Adder," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 61, no. 6, pp. 418-422, June 2014.B. Shao and P. Li, "Array-Based Approximate Arithmetic Computing: A
- General Model and Applications to Multiplier and Squarer Design," IEEE Transactions on Circuits and Systems

I: Regular Papers, vol. 62, no. 4, pp. 1081-1090, April 2015.

Published By:

& Sciences Publication

- A. Raha, H. Jayakumar, and V. Raghunathan, "Input-Based Dynamic Reconfiguration of Approximate Arithmetic Units for Video Encoding," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 24, no. 99, pp. 1-1, May 2015.
- M. S. Khairy, A. Khajeh, A. M. Eltawil and F. J. Kurdahi, "Equi-Noise: A Statistical Model That Combines Embedded Memory Failures and Channel Noise," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 61, no. 2, pp. 407-419, Feb. 2014.
 R. Ye, T. Wang, F. Yuan, R. Kumar and Q. Xu, "On
- R. Ye, T. Wang, F. Yuan, R. Kumar and Q. Xu, "On reconfiguration-oriented approximate adder design and its application," Proceedings of IEEE/ACM International Conference on Computer Aided Design (ICCAD), 2013, pp. 48-54.
- M. Shafique, W. Ahmad, R. Hafiz and J. Henkel, "A low latency generic accuracy configurable adder," Proceedings of 52nd ACM/EDAC/IEEE Design Automation Conference (DAC), 2015, pp. 1-6.
- N. Zhu et al. "Design of Low-Power High-Speed Truncation-Error-Tolerant Adder and Its Application in Digital Signal Processing," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 18, no. 8, pp. 1225-1229, Aug. 2010.
 N. Zhu, W.L. Goh and K.S. Yeo, "An enhanced low-power high-speed
- N. Zhu, W.L. Goh and K.S. Yeo, "An enhanced low-power high-speed Adder for Error-Tolerant application," Proceedings of International Symposium on Integrated Circuits (ISIC), 2009, pp. 69-72.
- 9. J. Hu and W. Qian, "A new approximate adder with low relative error and correct sign calculation," Proceedings of Design, Automation & Test in Europe (DATE) Conference & Exhibition, 2015, pp. 1449-1454.

AUTHORS PROFILE

Rangeetha, Assistant Professor, Ramakrishna college of Engineering college, Coimbatore, India

Sharmila devi Assistant Professor, Ramakrishna college of Engineering college, Coimbatore, India

Adline Jancy Y Assistant Professor, Ramakrishna college of Engineering college, Coimbatore, India

Published By:

& Sciences Publication

Blue Eyes Intelligence Engineering