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Abstract In this paper we look at functions which are 

Janowski α-q-spirallike associated with the m
th 

root 

transformation using the concept of the q-derivative introduced 

by Jackson[6] Specifically we look at functions f which are 

Janowski α-q-spirallike with power senes of the form f(z) = z + a2 

z
2 

+ a3 z
3 
+  
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I. INTRODUCTION 

Let E = {z : |z| <1} be the unit disc in the complex plane, and 

let Ω = {ω : ω analytic in E, ω(0) = 0, |ω(z)| <1, z ∈  E}. 

Then 

. Let A denote the class of functions of the form

  (1) which are analytic in the 

open disc E normalized by f(0) = 0, f0(0) = 1. In [6] Jackson 

introduced and studied the concept of the q-derivative 

operator ∂q as follows 
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. (2) 

n=2 

Equivalently (2), may be written as   

∞ 

∂qf(z) = 1 + X [n]q an zn−1, z 6= 0, (3) 

 

where [ , note that as q → 1−, [n]q → n. 

Ganesan[9] introduced the 

class ) as the class of functions f such that 

), where α is real and 

satisfies . Now we define the q-analogue of the class 

as the following: 

Definition 1.1. For real α,  a function f ∈  A given 

by (1) is said to be 

in the class of Janowski α-q-spirallike functions in unit disk 

if and only if 

 

 (4) 

Definition 1.2. If f ∈  A. Then the mth 

root transform is given by 
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∂qf(z) = 1 + X [n]q an zn−1, z 6= 0, (3) 
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 . (5) 

II. Main results 

We need the following Lemmas to prove our main results: 

Lemma 2.1. [2] If φ ∈  Ω and φ(z) = φ1z + φ2z2 + ..., (z ∈  E) then (6) if µ ≤ −1, 

 

 , if −1 ≤ µ ≤ 1, (7) 

 µ, if µ ≥ 1. 

For µ <1 or µ >1, the equation holds if and only if, φ(z) = z or one of its rotations. For −1 < µ <1, the 

equation holds if and only if, φ(z) = z2 or one of its rotations. Equality holds for µ = −1 if and only if 

1) or one of its rotations. While µ = 1, equation holds if and only if 

λ ≤ 1) or one of its rotations. 

Lemma 2.2. [7] If φ ∈  Ω then , for any complex number 

µ. The result is sharp for the function φ(z) = z or φ(z) = z2. 

Theorem 2.1. 

 if and only if 

(8) 

.

 . 

Proof. Let f(z) be an element of . We define φ(z) by;((A−B)cosαe−iα f(z) = (1 + 

Bφ−iα(z)) B , B 6= 0, (9) z eAcosαe , B = 0, 

where (1 +  and eAcosα e−iα have the value at z = 0. Then φ(z) is analytic and 

φ(0) = 0. If we take logarithmic derivative from (9) and after simple calculations,we get (10) 

. 

We can easily conclude that this 

subordination is equivalent to |φ(z)| 

<1 for all z ∈  E. On the contrary let as assume that there exists z1 ∈  E, such that |φ(z)| attains its 

maximum value on the circle |z| = r, that is |φ(z1)| = 1. Then when the conditions z1∂qφ(z1) = L(z1), L 

≥ 1 are satisfied for such z1 ∈  E (Using Jack’s Lemma), we obtain; 

, 

(11) 

which contradicts (10) implying that the assumption is wrong, i.e., |φ(z)| <1 for all z ∈  E. This shows that 

(12) 

. 

Conversely, 

(13) 
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= 0, 

(14) 

= 0. 

This shows that .  

Now we proceed to establish Coefficient bounds for the mth root transformation, 

Theorem 2.2. If and G is the mth root transformation of f given by (1), then 

 

,  

, . 

where 

 

and 

. 

Proof. If f(z) ∈  S∗ (A,B,q) then there is an analytic 

function φ ∈  Ω of the form (8) such that 

, if B 6= 0, 

if B = 0. 

Further, 

(15) 

 

 

 

 

 

 

(16) 

We have 

 ] (17) 

so that 

 

From (20) and (21),we get 
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For function f given by (1) simple computation yields 

  (21) 

The equations (5) and (24) yields 

  (22) 

 . (23) 

by using (22) and (23) in (25) and (26), it follows 

. 

 . 

and hence 

, 

where . 

The first result is established by an application of Lemma 2.1. If 

. 

then 

 

by Lemma 2.1 

, 

If 

 

then 
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, 

where , 

and Lemma 2.1 yields 

, 

If 

 

then, 

 

a

n

d

 

i

t follows from Lemma 2.1 that 

= 0 , 

o. 

The second result follow by an application of Lemma 2.2 

 
, if B 6= 0, 

if B = 0. 

where , 

and .  

By putting m = 1, A = 1, B = −1, and α = 0 in the Theorem 2.2, we get the following: 

Theorem 2.3. If f ∈  A satisfies . Then 

 , if µ ≤ ρ, 

, 

, 

where . 

As q → 1−in the above Theorem we get the following result proved by Annamalai[3] 

Corollary 2.1. If f ∈  A satisfies . Then 

 3 − 4µ if , 

  if , (24) 
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  −(3 − 4µ) if µ ≥ 1. 

By putting m = 1, A = 1, B = 0, and α = 0 in the Theorwe 2.2, we get the following: 

Theorem 2.4. If f ∈  A satisfies . Then 

, 

, 

, 

where . 

As q → 1−in the above Theorem we get the following result proved by Annamalai[3] 

Corollary 2.2. If f ∈  A satisfies . Then 

  if µ ≤ 0, 

if 0 ≤ µ ≤ 1, (25)  if µ ≥ 1. 

By putting m = 1, A = β, B = 0, and α = 0, 0 ≤ β <1 in the Theorem 2.2, we get the following:  

Theorem 2.5. If f ∈  A satisfies . Then 

, 

, 

, 

where . 

As q → 1−in the above Theorem we get the following result proved by Annamalai[3] Corollary 2.3. If f 

. Then ∈  A satisfies 

if , 

if , (26) if . 

By putting m = 1, A = β, B = −β, and α = 0, 0 ≤ β <1 in the 

Theorem 2.2, we get the following: 

Theorem 2.6. If f ∈  A satisfies . Then 

 , if µ ≤ ρ, 

, 

, 

where . 

If q → 1−in the above Theorem we get the following result proved by Annamalai[3] 

Corollary 2.4. If f ∈  A satisfies . Then
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 2(3 − 4µ) if, β 

 2 β if, (27) 

|a3 −µa2| ≤ 

  −(β2(3 − 4µ)) if . 

 

III. CONCLUSION 

 In this paper we found Janowski α-q-spirallike with 
power senes of the form and its properties. 
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