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Abstract: Stream processing systems need to be elastically 

scalable to process and respond the unpredictable massive load 

spike in real-time with high throughput and low latency. Though 

the modern cloud technologies can help in elastically provisioning 

the required computing resources on-the-fly, finding out the right 

point-in-time varies among systems based on their expected QoS 

characteristics. The latency sensitivity of the stream processing 

applications varies based on their nature and pre-set 

requirements. For few applications, even a little latency in the 

response will have huge impact, whereas for others the little 

latency will not have that much impact. For the former ones, the 

processing systems are expected to be highly available, elastically 

scalable, and fast enough to perform, whenever there is a spike. 

The time required to elasticity provision the systems under FaaS is 

very high, comparing to provisioning the Virtual Machines and 

Containers. However, the current FaaS systems have some 

limitations that need to be overcome to handle the unexpected 

spike in real-time. This paper proposes a new algorithm called 

Elastic-FaaS on top of the existing FaaS to overcome this QoS 

latency issue. Our proposed algorithm will provision required 

number of FaaS container instances than any typical FaaS can 

provision normally, whenever there is a demand to avoid the 

latency issue. We have experimented our algorithm with an event 

stream processing system and the result shows that our proposed 

Elastic-FaaS algorithm performs better than typical FaaS by 

improving the throughput that meets the high accuracy and low 

latency requirements. 

Keywords: Data Stream Processing, Serverless, 

Function-as-a-Service, Elastic FaaS.  

I. INTRODUCTION 

With ever growing technologies and devices, the data stream 

is produced everywhere with ever increasing speed. 

However, the processing of those streams has some latency in 

real time stream processing systems. Sometimes few events 

are getting discarded due to the non-availability of systems. 

Since each event in the stream might have precious 

information, these discarded events will have impact on the 

final accuracy. So, all events need to be given equal 

importance for a precise result. Hence stream processing 

applications are always in need of highly available systems to 

process the streams on arrival [1]. Also, since the stream 

cannot be persisted completely because of its unbounded 

nature, most of the stream processing systems are expected to 

work with exactly-once processing guarantee on-the-fly. 
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The effective utilization of modern technologies such as 

cloud computing, fog computing, edge computing, and 

containerization technologies can help us achieve these QoS 

characteristics. This paper introduces an algorithm that 

focuses on how serverless [11] computing can be used 

effectively for stream processing with the above objective. 

Serverless computing is a method of providing the functional 

services on-demand basis. With the help of Serverless 

provider, the users can write and deploy the business code 

without thinking much about the underlying infrastructure 

[11]. Also, the underlying services will auto-scale whenever 

there is a spike and demand. Though there are many flavors 

in Serverless, it is mostly known for Function-as-a-Service, 

which is commonly known as FaaS. The underlying systems 

of FaaS is mostly built to work with low CPU and memory. 

The availability in FaaS systems will be high [20], comparing 

to the other computing systems mentioned above, hence the 

throughput and accuracy will also be high. It is known that 

event stream processing requires less CPU and memory 

comparing with the batch processing [21]. This naturally 

matches with the native characteristics of FaaS. So, when a 

FaaS stream processors are readily available, whenever a new 

event is arrived or a window of events are arrived, those 

events can be processed without delay and the result can be 

responded immediately. Also, it is known that in IaaS, the 

provisioning of virtual machines will take few minutes. In 

PaaS, it will take few seconds to deliver the required 

platform. But in FaaS, the underlying containers will be 

provisioned in milliseconds. Also, there is a difference 

between VMs, Containers, and FaaS. The provisioning and 

deprovisioning of VMs and Containers are in end user’s 

control, but in case of FaaS, only the provisioning part is in 

end user control, the deprovisioning is taken care by the 

provider. It has both advantages and disadvantages. The 

advantage is that there is no overhead of carefully disposing 

them by the end user, and the disadvantage is that the end 

user cannot change the behavior of the system based on their 

usage. The following is going to be the flow of this paper. In 

section II, we will walk through the background and related 

work, and in section III, we will provide the solution 

overview, and in section IV, we will derive an algorithm 

based on the formulae introduced in section III, and the 

implementation will be explained in section V, and the 

experimental results will be shown in section VI. Section VII 

will summarize the paper with the future path. 

II.  BACKGROUND AND RELATED WORK 

The study on elastic stream processing has been consistently 

growing in the recent decades. Some existing literature 

papers have explored and shared the various approaches for 

elastic steam processing.  
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Bugra et al [1] proposed an auto-parallelization solution that 

will dynamically change the number of parallel channels to 

achieve the best throughput based on work load changes. In 

this paper, the algorithm proposed was based on the 

deployment of individual nodes. Cervino et al [2] proposed 

an adaptive algorithm for provisioning virtual machines for 

data stream processing systems in the cloud, based on their 

benchmark tests across performance metrics such as network 

latency and jitter. Similarly, our earlier work [3] proposed a 

fixed number of local machines and adaptive virtual 

machines to process the stream with high throughput. All 

these papers were targeting the elastic scalability of the 

stream processing system based on the individual nodes. 

Heinze, T et al [4] [6] presented an elastic allocator for 

Complex Event Processing systems with the help of bin 

packing in which the system deploys or redeploys the stream 

processing operator in available nodes based on the input rate 

and computing power required. B. Lohrmann et al [5] 

presented a reactive strategy to enforce latency guarantees in 

data flows running on scalable stream processing engines, 

while minimizing the resource consumption. Lorido-Botran 

et al [7] discussed about all cloud technologies that can be 

used for stream processing system except FaaS, and Brogi A. 

et al [8] discussed about stream processing with Docker on 

Fog where the deployment is carried over by the docker 

containers. Again, all these papers were based on the 

individual machines, nodes, or containers which cannot be 

directly applied for the FaaS based stream processing 

systems. 

Each cloud FaaS providers maintain their own standards, and 

also since FaaS technology itself is evolving day-by-day, the 

provider’s documentation has only the partial information. 

The FaaS systems are controlled by their proprietary internal 

kernels which cannot be estimated by the end-users. Also, 

there is still scope to improvise the provisioning and usage 

patterns. Though FaaS can be used for elastically 

provisioning the underlying infrastructure whenever there is 

a load, it has some provider preconfigured limitations in 

scaling. But in real life applications, these limitations will 

become impediments and need to be overcome. So, in this 

aspect there were few research papers already written for 

Stream processing with FaaS. The paper [9] and [10] propose 

predictive controllers that dynamically allocate resources in 

FaaS provider platform. There are few other serverless 

related papers which are given in the reference section. From 

the study, it seems that none of the existing works attempted 

to resolve the fast scalability limitation problem from outside 

the FaaS provider. This paper attempts to do that. The 

algorithm proposed in this paper, will provision the sufficient 

number of FaaS container instances than any existing FaaS 

can provide normally, whenever there is a load and demand 

with low latency requirement. 

III. SOLUTION OVERVIEW 

We will use the term “Processor” to mean “Stream 

Processor” or specifically “FaaS Function”, and 

“Sub-Processor” to mean “Sub-Stream Processor” or 

specifically “FaaS Function Container Instance”. Also the 

below abbreviations will be used in rest of this paper for 

better readability and understanding: 
− Qt - Event Stream Queue length at time (t) 

− Pc - Processor capacity 

− NPt - Number of Processors at time (t) 

− NPt’ - Number of expected Processors at time (t’) 

− NSPt - Number of Sub-Processors at time (t) 

− NSPt’ - Number of expected Sub-Processors at time (t’) 

− SPc - Sub-Processor capacity 

− MNSP - Maximum number of Sub-Processors allowed per 

Processor 

− TNSPt - Total number of Sub-Processors for all Processors at 

time (t) 

− TNSPt’ - Total number of expected Sub-Processors for all 

Processors at time (t’) 

− L - QoS SLA for latency allowed in unit time 

− PPT - Processor provisioning time 

− n - Expected number of iterations to provision the required 

Processors. 

− c - Number of Sub-Processors deployed per iteration. 

− tf  - Timer Frequency 

We form the below elastic provisioning formula to find out 

the number of Processors expected to process all items from a 

queue in time t’. 

 

 

(1) 

The above formula can be directly applied for adaptively 

provisioning the individual systems such as VMs, 

Containers, and so on. However, in systems like FaaS, this 

formula cannot be directly applied, since in FaaS under each 

Function, there can be multiple containers. These FaaS 

containers are incrementally deployed with certain time 

interval based on the load,  invocation type, and other 

parameters [23][24]. For this kind of FaaS environment, a 

few changes are required in the above formula. So, the 

number of Sub-Processors (Container instances) deployed at 

the rate of (c) in the interval of (n) after time (t’) can be 

formed as: 

 

(2) 

The number of Sub-Processors instantiated vary from 

time-to-time based on scale-out, scale-in, and max concurrent 

limit. Also, it will vary from one Processor to another, since 

each Processor would have been instantiated at different 

timings. So, the total number of instantiated Sub-Processors 

for all currently running Processors at time (t) can be 

obtained by summing up the Sub-Processors created at each 

Processor as: 

 

(3) 

 

Similarly, the total number of allowed Sub-Processors for all 

currently running Processors at time (t) can be obtained by 

multiplying the number of Processors with their allowed 

Sub-Processors.  

 

 
(4) 

 

The expected number of Sub-Processors for the given stream 

load can be arrived at time (t’) by substituting (3) in (1): 
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(5) 

 

Expected number of iterations or time units to reach the 

expected Sub-Processors found in (5) can be formed from (2) 

as: 

 

(6) 

 

If the expected iterations (n) is greater than both QoS latency 

and the time taken to provision a new Processor (FaaS 

Function), then the system can scale-out for new 

Processor(s). The number of new Processors required can be 

obtained by dividing NSPt’ by TMNSP. 

 

 

(7) 

Here, the system will scale based on NPt’. If it is greater than 

NPt, then scale-out will happen. If it is less than NPt the 

scale-in can happen; Otherwise, no action is required, since 

the system is stable already to process the incoming load. 

The conceptual design is depicted in the Figure 1. Figure 1a 

shows a simple stream processing system with a producer, a 

queue, a stream processor, and a database. This kind of 

design is enough for simple event stream processing system. 

Figure 1b shows multiple stream producers and multiple 

stream processors along with a queue and a database. It suits 

for the stream processing systems where the latency is 

tolerated. Figure 1c also has multiple stream producers, a 

queue, and a database. But instead of having multiple 

individually spun up stream processors, these stream 

processors were spun up elastically by the FaaS Function 

App. Here, FaaS provider takes care of automatically 

provisioning and deprovisioning the underlying stream 

processing containers. Figure 1d is almost similar to Figure 

1c, but with multiple FaaS Function Apps that are elastically 

spun up by our Elastic-FaaS algorithm. This algorithm 

provisions more containers than a normal FaaS can do. 

Generally, in FaaS environment, the scale-in or the 

deprovisioning is taken care by the providers. Hence, we are 

not going to focus much about the deprovisioning part in the 

upcoming sections and the rest of this paper as well. However 

the algorithm has been designed to take care of that. The 

above conceptual design can be applied in other scenarios as 

well, such as Cluster to Virtual Machine, Virtual Machine to 

Containers, and so on. 

IV. CONTROL ALGORITHM 

The Algorithm 1 shows the formulae derived in Section III in 

programmatic flow. The algorithm starts with setting up the 

infrastructure such as queue and FaaS through scripts. The 

input to the algorithm is initialized and the default values are 

set. The maximum number of FaaS concurrent container 

instances (MNSP) can be retrieved from the respective FaaS 

provider SDKs/Spec. This varies from one provider to 

another, and also from one plan to another. The capacity of 

the container instance (SPc) will vary based on the end user 

application’s functional logic and provider infrastructure 

load. The former can be identified by the end user by looking 

at the functional code and its performance metrics, whereas 

the later cannot be done by the end user. Also, the expected 

SLA latency (L) of QoS can be set by the end user. This will 

control the entire algorithm. Also, the time taken to provision 

a FaaS Function (PPT) can be either retrieved from the 

provider spec or can be set by the end user based on the 

previous experience with the provider.  
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The timer frequency (tf) sets how often the monitor algorithm 

should run so that the elastic-scaling can happen 

automatically. The timer invokes the monitor functionality at 

pre-set frequency interval. The monitor is core part of this 

Elastic-FaaS algorithm. It takes care of finding out number of 

required FaaS Functions to be created, so that the streams can 

be processed with high throughput and low latency. FaaS 

itself is known for its elastic nature. However, the reason why 

we named this algorithm as Elastic-FaaS is that this algorithm 

will elastically scale the number of FaaS Functions which 

in-turn will have the multiplication effect on the number of 

FaaS Function container instances provisioned. 

 
Algorithm 1: Elastic-FaaS 

Environment: 

Queue - Event Stream Queue 

FaaS - Function as a Service 

 

Initializer: 

NPt = 1 

NPt’ = 1 

TNSPt = 0 

c = Set by FaaS provider  

MNSP = Set by FaaS provider 

PPT = Set by FaaS provider 

SPc = Get from recent performance 

metrics 

L = Set by Elastic-FaaS consumer 

tf = Set by Elastic-FaaS consumer 
 

Output: 

Elastically Scaling system. 

High throughput with low latency 

result. 

 

Timer: 

1. Monitor() 
 

Monitor: 

2. NSPt’ = (c(n(n+1)))/2 
 

3. For (p = 1; p < NPt; p++) 
4.    TNSPt += NSPs[p] 
5. End For 

 

6. TMNSP = NPt.MNSP 
 

7. TNSPt’ = TNSPt + (Qt-TNSPt.Pc)/Pc 
 

8. n = SQRT ((2.NSPt’ – c)/c) 
 

9. If (n > L) then 
10.    If (n > PPT) then 
11.      NPt’ = NSPt’/TMNSP 
12.    End If 
13. End If 
 

14. Scaler(NPt’) 
 

Scaler: 

15. If NPt’ > NPt then 
16.   ScaleOutProcessor(NPt’) 

 

17. If NPt’ < NPt then 
18.   ScaleInProcessor(NPt’) 

 

19. NPt = NPt’ 
 

Processor: 

20. If (load increase) 
21.   ScaleOutSubProcessor() 

 

22. If (load decrease) 
23.   ScaleInSubProcessor() 

 

Sub-Processor: 

   On arrival of an event, 

24. Process it  
25. Store the result 
26. Acknowledge to Queue 

 

V. IMPLEMENTATION 

The algorithm can be simulated with any FaaS provider. 

However, there will be slight change in the behavior of each 

service provider. We have used Azure Function for our 

experiment. The reference architecture of this 

implementation is given in Figure 2. If AWS Lambda, 

Google Cloud Function, Apache OpenWhisk, OpenFaaS, or 

any other FaaS would have been chosen, its implementation 

would have been little different, since each FaaS provider’s 

elastic characteristics and implementation steps are different 

from each other [26]. We created a direct acyclic graph for 

experimenting our algorithm with data producer, queue, a 

stream processing function app, and the Azure Table Storage 

for persisting the final result. The first part was synthetic data 

producer which produces the bank transaction synthetic data 

for this experiment. This data producer adds the data into the 

Azure Service Bus Queue. There were multiple instances of 

producer running to generate and add the massive synthetic 

data into the Queue. This data was in JSON format and has 

transaction id, timestamp, account number, currency type, 

and amount value attributes in it.  

The Azure Function App was created to classify whether a 

transaction is a high-value or low-value transaction. The 

amount which is greater than certain value is considered as 

high-value, and anything below that value is considered as 

low-value transactions. At the rear-end, the classification 

result is stored into the Azure Table along with the time it 

took for processing, Function App id, instance id, and 

transaction id. This table in-turn will be used to identify how 

many high-value transactions were done between certain 

time limits. 

http://www.ijitee.org/
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The programmatically produced synthetic data are added into 

the Queue, and a Function App was created via the Azure 

CLI [24]. It started processing the transactions one-by-one, 

and since there was huge transactions already piled up in 

queue, and was continuously getting added, the first Function 

App started adding new stream processing instances one after 

other with certain time interval. At certain stage, we could 

notice that the number of outgoing queue items were very 

less than the incoming queue items. And at one stage the 

queue was intermittently not accepting the incoming 

messages. i.e., load shedding started occurring. That means 

some of the events were getting discarded, so our end result 

will not be accurate. 

Then we ran our Elastic-FaaS algorithm that was scripted 

with Azure CLI. In next few minutes, the algorithm created a 

new Function App. The containers from both the existing 

Function App and newly created Function App started 

processing the queue items. Subsequently few more Function 

Apps were also created by the algorithm, since there was still 

huge load on the queue. This means the number of Function 

App Container instances that got spun up were increased with 

multiplier effect. After few seconds, we could see the number 

of outgoing messages were increased and Queue started 

accepting more incoming messages. i.e., load shedding was 

gone because of the high availability of the containers. The 

results are provided in the next section. Also, as mentioned 

earlier, the deprovisioning of container instances are taken 

care by the FaaS provider based on the load and other 

parameters. The new FaaS Functions that were created by the 

algorithm are deprovisioned by this algorithm itself as part of 

the scale-in flow.  

VI. EXPERIMENTAL RESULT 

The experimental results are shown in the charts of Figure 3. 

The figure 3a shows the timing of the new FaaS Functions 

and their containers created by our Elastic-FaaS algorithm. 

First FaaS was initially created by us. Second FaaS was 

created by the algorithm after few minutes, and similarly 

third FaaS. Figure 3b shows overall FaaS Function container 

instances that were created by this algorithm.  

 

Table 1. Instances provisioned by time 

Time FaaS 1 FaaS 2 FaaS 3 Total 

00:00 1 - - 1 

00:02 2 - - 2 

00:04 3 - - 3 

00:06 4 - - 4 

00:08 5 - - 5 

00:10 6 1 - 7 

00:12 7 2 - 9 

00:14 8 3 - 11 

00:16 9 4 - 13 

00:18 10 5 - 15 

00:20 11 6 1 18 

00:22 12 7 2 21 

00:24 13 8 3 24 

00:26 14 9 4 27 

00:28 15 10 5 30 

 

Figure 3c shows how long it would have taken for a stream 

processing system with 1 FaaS over 3 FaaS to reach 30 FaaS 

Function Container instances. Table 1 shows the number of 

instances provisioned by each FaaS at certain time intervals.  
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The single FaaS would have taken nearly sixty time units 

comparing to the three FaaS which took less than thirty time 

units. Figure 3d shows how the ingestion and throughput are 

balanced by our algorithm. When the system was started, the 

input rate was higher, and there was less throughput that 

caused the load shedding.   

After the Elastic-FaaS started adding the Functions 

one-by-one the throughput increased gradually, and at certain 

stage the system was able to process the input load without 

much latency and with high throughput. The total number of 

high-value and low-value transactions became accurate after 

our algorithm’s elastic provisioning, since the load-shedding 

was avoided by the high availability of containers. 

VII. CONCLUSION AND FUTURE WORK 

We presented a novel elastically scalable Elastic-FaaS 

algorithm that increases the availability of the stream 

processing systems whenever there is a load. It is able to 

control the number of FaaS containers provisioned by 

adjusting QoS-latency requirement. The experimental result 

shows that our algorithm gets rid of the load shedding issue 

by improving the systems availability which in turn increases 

the throughput that meets the high accuracy and low latency 

requirements. This makes our Elastic-FaaS algorithm to 

perform better than typical FaaS. This algorithm can be 

explored in many real-time on-demand deployment scenarios 

where elastic scalability is highly required in short span of 

time. In future, we will focus on integrating this algorithm 

with real life applications and also with other widely used 

recent stream processing systems. Also, since FaaS has been 

changing the way the stream processing and mining systems 

worked in the past, we will further work on increasing the 

availability of the FaaS containers by resolving the cold-start 

issues [19]. 
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