
International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075 (Online), Volume-8 Issue-10, August 2019

3756

Published By:

Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: J99650881019/19©BEIESP

DOI: 10.35940/ijitee.J9965.0881019

Journal Website: www.ijitee.org

Abstract: Stream processing systems need to be elastically

scalable to process and respond the unpredictable massive load

spike in real-time with high throughput and low latency. Though

the modern cloud technologies can help in elastically provisioning

the required computing resources on-the-fly, finding out the right

point-in-time varies among systems based on their expected QoS

characteristics. The latency sensitivity of the stream processing

applications varies based on their nature and pre-set

requirements. For few applications, even a little latency in the

response will have huge impact, whereas for others the little

latency will not have that much impact. For the former ones, the

processing systems are expected to be highly available, elastically

scalable, and fast enough to perform, whenever there is a spike.

The time required to elasticity provision the systems under FaaS is

very high, comparing to provisioning the Virtual Machines and

Containers. However, the current FaaS systems have some

limitations that need to be overcome to handle the unexpected

spike in real-time. This paper proposes a new algorithm called

Elastic-FaaS on top of the existing FaaS to overcome this QoS

latency issue. Our proposed algorithm will provision required

number of FaaS container instances than any typical FaaS can

provision normally, whenever there is a demand to avoid the

latency issue. We have experimented our algorithm with an event

stream processing system and the result shows that our proposed

Elastic-FaaS algorithm performs better than typical FaaS by

improving the throughput that meets the high accuracy and low

latency requirements.

Keywords: Data Stream Processing, Serverless,

Function-as-a-Service, Elastic FaaS.

I. INTRODUCTION

With ever growing technologies and devices, the data stream

is produced everywhere with ever increasing speed.

However, the processing of those streams has some latency in

real time stream processing systems. Sometimes few events

are getting discarded due to the non-availability of systems.

Since each event in the stream might have precious

information, these discarded events will have impact on the

final accuracy. So, all events need to be given equal

importance for a precise result. Hence stream processing

applications are always in need of highly available systems to

process the streams on arrival [1]. Also, since the stream

cannot be persisted completely because of its unbounded

nature, most of the stream processing systems are expected to

work with exactly-once processing guarantee on-the-fly.

Manuscript published on 30 August 2019.
*Correspondence Author(s)

Jagadheeswaran Kathirvel*, Research Scholar, Department of Computer
Science, Bharathiar University, Coimbatore, INDIA. Email:

jagpro@gmail.com
Elango Parasuraman, Assistant Professor, Department of Information

Technology, Perunthalaivar Kamarajar Institute of Engineering and

Technology, Karaikal, INDIA. Email: elanalin_74@yahoo.com

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the

CC-BY-NC-ND license http://creativecommons.org/licenses/by-nc-nd/4.0/

The effective utilization of modern technologies such as

cloud computing, fog computing, edge computing, and

containerization technologies can help us achieve these QoS

characteristics. This paper introduces an algorithm that

focuses on how serverless [11] computing can be used

effectively for stream processing with the above objective.

Serverless computing is a method of providing the functional

services on-demand basis. With the help of Serverless

provider, the users can write and deploy the business code

without thinking much about the underlying infrastructure

[11]. Also, the underlying services will auto-scale whenever

there is a spike and demand. Though there are many flavors

in Serverless, it is mostly known for Function-as-a-Service,

which is commonly known as FaaS. The underlying systems

of FaaS is mostly built to work with low CPU and memory.

The availability in FaaS systems will be high [20], comparing

to the other computing systems mentioned above, hence the

throughput and accuracy will also be high. It is known that

event stream processing requires less CPU and memory

comparing with the batch processing [21]. This naturally

matches with the native characteristics of FaaS. So, when a

FaaS stream processors are readily available, whenever a new

event is arrived or a window of events are arrived, those

events can be processed without delay and the result can be

responded immediately. Also, it is known that in IaaS, the

provisioning of virtual machines will take few minutes. In

PaaS, it will take few seconds to deliver the required

platform. But in FaaS, the underlying containers will be

provisioned in milliseconds. Also, there is a difference

between VMs, Containers, and FaaS. The provisioning and

deprovisioning of VMs and Containers are in end user’s

control, but in case of FaaS, only the provisioning part is in

end user control, the deprovisioning is taken care by the

provider. It has both advantages and disadvantages. The

advantage is that there is no overhead of carefully disposing

them by the end user, and the disadvantage is that the end

user cannot change the behavior of the system based on their

usage. The following is going to be the flow of this paper. In

section II, we will walk through the background and related

work, and in section III, we will provide the solution

overview, and in section IV, we will derive an algorithm

based on the formulae introduced in section III, and the

implementation will be explained in section V, and the

experimental results will be shown in section VI. Section VII

will summarize the paper with the future path.

II. BACKGROUND AND RELATED WORK

The study on elastic stream processing has been consistently

growing in the recent decades. Some existing literature

papers have explored and shared the various approaches for

elastic steam processing.

A QoS-Latency Aware Event Stream

Processing with Elastic-FaaS
Jagadheeswaran Kathirvel, Elango Parasuraman

http://www.ijitee.org/
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijitee.J9965.0881019&domain=www.ijitee.org

A QoS-Latency Aware Event Stream Processing with Elastic-FaaS

3757

Published By:

Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: J99650881019/19©BEIESP

DOI: 10.35940/ijitee.J9965.0881019

Journal Website: www.ijitee.org

Bugra et al [1] proposed an auto-parallelization solution that

will dynamically change the number of parallel channels to

achieve the best throughput based on work load changes. In

this paper, the algorithm proposed was based on the

deployment of individual nodes. Cervino et al [2] proposed

an adaptive algorithm for provisioning virtual machines for

data stream processing systems in the cloud, based on their

benchmark tests across performance metrics such as network

latency and jitter. Similarly, our earlier work [3] proposed a

fixed number of local machines and adaptive virtual

machines to process the stream with high throughput. All

these papers were targeting the elastic scalability of the

stream processing system based on the individual nodes.

Heinze, T et al [4] [6] presented an elastic allocator for

Complex Event Processing systems with the help of bin

packing in which the system deploys or redeploys the stream

processing operator in available nodes based on the input rate

and computing power required. B. Lohrmann et al [5]

presented a reactive strategy to enforce latency guarantees in

data flows running on scalable stream processing engines,

while minimizing the resource consumption. Lorido-Botran

et al [7] discussed about all cloud technologies that can be

used for stream processing system except FaaS, and Brogi A.

et al [8] discussed about stream processing with Docker on

Fog where the deployment is carried over by the docker

containers. Again, all these papers were based on the

individual machines, nodes, or containers which cannot be

directly applied for the FaaS based stream processing

systems.

Each cloud FaaS providers maintain their own standards, and

also since FaaS technology itself is evolving day-by-day, the

provider’s documentation has only the partial information.

The FaaS systems are controlled by their proprietary internal

kernels which cannot be estimated by the end-users. Also,

there is still scope to improvise the provisioning and usage

patterns. Though FaaS can be used for elastically

provisioning the underlying infrastructure whenever there is

a load, it has some provider preconfigured limitations in

scaling. But in real life applications, these limitations will

become impediments and need to be overcome. So, in this

aspect there were few research papers already written for

Stream processing with FaaS. The paper [9] and [10] propose

predictive controllers that dynamically allocate resources in

FaaS provider platform. There are few other serverless

related papers which are given in the reference section. From

the study, it seems that none of the existing works attempted

to resolve the fast scalability limitation problem from outside

the FaaS provider. This paper attempts to do that. The

algorithm proposed in this paper, will provision the sufficient

number of FaaS container instances than any existing FaaS

can provide normally, whenever there is a load and demand

with low latency requirement.

III. SOLUTION OVERVIEW

We will use the term “Processor” to mean “Stream

Processor” or specifically “FaaS Function”, and

“Sub-Processor” to mean “Sub-Stream Processor” or

specifically “FaaS Function Container Instance”. Also the

below abbreviations will be used in rest of this paper for

better readability and understanding:
− Qt - Event Stream Queue length at time (t)

− Pc - Processor capacity

− NPt - Number of Processors at time (t)

− NPt’ - Number of expected Processors at time (t’)

− NSPt - Number of Sub-Processors at time (t)

− NSPt’ - Number of expected Sub-Processors at time (t’)

− SPc - Sub-Processor capacity

− MNSP - Maximum number of Sub-Processors allowed per

Processor

− TNSPt - Total number of Sub-Processors for all Processors at

time (t)

− TNSPt’ - Total number of expected Sub-Processors for all

Processors at time (t’)

− L - QoS SLA for latency allowed in unit time

− PPT - Processor provisioning time

− n - Expected number of iterations to provision the required

Processors.

− c - Number of Sub-Processors deployed per iteration.

− tf - Timer Frequency

We form the below elastic provisioning formula to find out

the number of Processors expected to process all items from a

queue in time t’.

(1)

The above formula can be directly applied for adaptively

provisioning the individual systems such as VMs,

Containers, and so on. However, in systems like FaaS, this

formula cannot be directly applied, since in FaaS under each

Function, there can be multiple containers. These FaaS

containers are incrementally deployed with certain time

interval based on the load, invocation type, and other

parameters [23][24]. For this kind of FaaS environment, a

few changes are required in the above formula. So, the

number of Sub-Processors (Container instances) deployed at

the rate of (c) in the interval of (n) after time (t’) can be

formed as:

(2)

The number of Sub-Processors instantiated vary from

time-to-time based on scale-out, scale-in, and max concurrent

limit. Also, it will vary from one Processor to another, since

each Processor would have been instantiated at different

timings. So, the total number of instantiated Sub-Processors

for all currently running Processors at time (t) can be

obtained by summing up the Sub-Processors created at each

Processor as:

(3)

Similarly, the total number of allowed Sub-Processors for all

currently running Processors at time (t) can be obtained by

multiplying the number of Processors with their allowed

Sub-Processors.

(4)

The expected number of Sub-Processors for the given stream

load can be arrived at time (t’) by substituting (3) in (1):

http://www.ijitee.org/

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075 (Online), Volume-8 Issue-10, August 2019

3758

Published By:

Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: J99650881019/19©BEIESP

DOI: 10.35940/ijitee.J9965.0881019

Journal Website: www.ijitee.org

(5)

Expected number of iterations or time units to reach the

expected Sub-Processors found in (5) can be formed from (2)

as:

(6)

If the expected iterations (n) is greater than both QoS latency

and the time taken to provision a new Processor (FaaS

Function), then the system can scale-out for new

Processor(s). The number of new Processors required can be

obtained by dividing NSPt’ by TMNSP.

(7)

Here, the system will scale based on NPt’. If it is greater than

NPt, then scale-out will happen. If it is less than NPt the

scale-in can happen; Otherwise, no action is required, since

the system is stable already to process the incoming load.

The conceptual design is depicted in the Figure 1. Figure 1a

shows a simple stream processing system with a producer, a

queue, a stream processor, and a database. This kind of

design is enough for simple event stream processing system.

Figure 1b shows multiple stream producers and multiple

stream processors along with a queue and a database. It suits

for the stream processing systems where the latency is

tolerated. Figure 1c also has multiple stream producers, a

queue, and a database. But instead of having multiple

individually spun up stream processors, these stream

processors were spun up elastically by the FaaS Function

App. Here, FaaS provider takes care of automatically

provisioning and deprovisioning the underlying stream

processing containers. Figure 1d is almost similar to Figure

1c, but with multiple FaaS Function Apps that are elastically

spun up by our Elastic-FaaS algorithm. This algorithm

provisions more containers than a normal FaaS can do.

Generally, in FaaS environment, the scale-in or the

deprovisioning is taken care by the providers. Hence, we are

not going to focus much about the deprovisioning part in the

upcoming sections and the rest of this paper as well. However

the algorithm has been designed to take care of that. The

above conceptual design can be applied in other scenarios as

well, such as Cluster to Virtual Machine, Virtual Machine to

Containers, and so on.

IV. CONTROL ALGORITHM

The Algorithm 1 shows the formulae derived in Section III in

programmatic flow. The algorithm starts with setting up the

infrastructure such as queue and FaaS through scripts. The

input to the algorithm is initialized and the default values are

set. The maximum number of FaaS concurrent container

instances (MNSP) can be retrieved from the respective FaaS

provider SDKs/Spec. This varies from one provider to

another, and also from one plan to another. The capacity of

the container instance (SPc) will vary based on the end user

application’s functional logic and provider infrastructure

load. The former can be identified by the end user by looking

at the functional code and its performance metrics, whereas

the later cannot be done by the end user. Also, the expected

SLA latency (L) of QoS can be set by the end user. This will

control the entire algorithm. Also, the time taken to provision

a FaaS Function (PPT) can be either retrieved from the

provider spec or can be set by the end user based on the

previous experience with the provider.

http://www.ijitee.org/

A QoS-Latency Aware Event Stream Processing with Elastic-FaaS

3759

Published By:

Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: J99650881019/19©BEIESP

DOI: 10.35940/ijitee.J9965.0881019

Journal Website: www.ijitee.org

The timer frequency (tf) sets how often the monitor algorithm

should run so that the elastic-scaling can happen

automatically. The timer invokes the monitor functionality at

pre-set frequency interval. The monitor is core part of this

Elastic-FaaS algorithm. It takes care of finding out number of

required FaaS Functions to be created, so that the streams can

be processed with high throughput and low latency. FaaS

itself is known for its elastic nature. However, the reason why

we named this algorithm as Elastic-FaaS is that this algorithm

will elastically scale the number of FaaS Functions which

in-turn will have the multiplication effect on the number of

FaaS Function container instances provisioned.

Algorithm 1: Elastic-FaaS

Environment:

Queue - Event Stream Queue

FaaS - Function as a Service

Initializer:

NPt = 1

NPt’ = 1

TNSPt = 0

c = Set by FaaS provider

MNSP = Set by FaaS provider

PPT = Set by FaaS provider

SPc = Get from recent performance

metrics

L = Set by Elastic-FaaS consumer

tf = Set by Elastic-FaaS consumer

Output:

Elastically Scaling system.

High throughput with low latency

result.

Timer:

1. Monitor()

Monitor:

2. NSPt’ = (c(n(n+1)))/2

3. For (p = 1; p < NPt; p++)
4. TNSPt += NSPs[p]
5. End For

6. TMNSP = NPt.MNSP

7. TNSPt’ = TNSPt + (Qt-TNSPt.Pc)/Pc

8. n = SQRT ((2.NSPt’ – c)/c)

9. If (n > L) then
10. If (n > PPT) then
11. NPt’ = NSPt’/TMNSP
12. End If
13. End If

14. Scaler(NPt’)

Scaler:

15. If NPt’ > NPt then
16. ScaleOutProcessor(NPt’)

17. If NPt’ < NPt then
18. ScaleInProcessor(NPt’)

19. NPt = NPt’

Processor:

20. If (load increase)
21. ScaleOutSubProcessor()

22. If (load decrease)
23. ScaleInSubProcessor()

Sub-Processor:

 On arrival of an event,

24. Process it
25. Store the result
26. Acknowledge to Queue

V. IMPLEMENTATION

The algorithm can be simulated with any FaaS provider.

However, there will be slight change in the behavior of each

service provider. We have used Azure Function for our

experiment. The reference architecture of this

implementation is given in Figure 2. If AWS Lambda,

Google Cloud Function, Apache OpenWhisk, OpenFaaS, or

any other FaaS would have been chosen, its implementation

would have been little different, since each FaaS provider’s

elastic characteristics and implementation steps are different

from each other [26]. We created a direct acyclic graph for

experimenting our algorithm with data producer, queue, a

stream processing function app, and the Azure Table Storage

for persisting the final result. The first part was synthetic data

producer which produces the bank transaction synthetic data

for this experiment. This data producer adds the data into the

Azure Service Bus Queue. There were multiple instances of

producer running to generate and add the massive synthetic

data into the Queue. This data was in JSON format and has

transaction id, timestamp, account number, currency type,

and amount value attributes in it.

The Azure Function App was created to classify whether a

transaction is a high-value or low-value transaction. The

amount which is greater than certain value is considered as

high-value, and anything below that value is considered as

low-value transactions. At the rear-end, the classification

result is stored into the Azure Table along with the time it

took for processing, Function App id, instance id, and

transaction id. This table in-turn will be used to identify how

many high-value transactions were done between certain

time limits.

http://www.ijitee.org/

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075 (Online), Volume-8 Issue-10, August 2019

3760

Published By:

Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: J99650881019/19©BEIESP

DOI: 10.35940/ijitee.J9965.0881019

Journal Website: www.ijitee.org

The programmatically produced synthetic data are added into

the Queue, and a Function App was created via the Azure

CLI [24]. It started processing the transactions one-by-one,

and since there was huge transactions already piled up in

queue, and was continuously getting added, the first Function

App started adding new stream processing instances one after

other with certain time interval. At certain stage, we could

notice that the number of outgoing queue items were very

less than the incoming queue items. And at one stage the

queue was intermittently not accepting the incoming

messages. i.e., load shedding started occurring. That means

some of the events were getting discarded, so our end result

will not be accurate.

Then we ran our Elastic-FaaS algorithm that was scripted

with Azure CLI. In next few minutes, the algorithm created a

new Function App. The containers from both the existing

Function App and newly created Function App started

processing the queue items. Subsequently few more Function

Apps were also created by the algorithm, since there was still

huge load on the queue. This means the number of Function

App Container instances that got spun up were increased with

multiplier effect. After few seconds, we could see the number

of outgoing messages were increased and Queue started

accepting more incoming messages. i.e., load shedding was

gone because of the high availability of the containers. The

results are provided in the next section. Also, as mentioned

earlier, the deprovisioning of container instances are taken

care by the FaaS provider based on the load and other

parameters. The new FaaS Functions that were created by the

algorithm are deprovisioned by this algorithm itself as part of

the scale-in flow.

VI. EXPERIMENTAL RESULT

The experimental results are shown in the charts of Figure 3.

The figure 3a shows the timing of the new FaaS Functions

and their containers created by our Elastic-FaaS algorithm.

First FaaS was initially created by us. Second FaaS was

created by the algorithm after few minutes, and similarly

third FaaS. Figure 3b shows overall FaaS Function container

instances that were created by this algorithm.

Table 1. Instances provisioned by time

Time FaaS 1 FaaS 2 FaaS 3 Total

00:00 1 - - 1

00:02 2 - - 2

00:04 3 - - 3

00:06 4 - - 4

00:08 5 - - 5

00:10 6 1 - 7

00:12 7 2 - 9

00:14 8 3 - 11

00:16 9 4 - 13

00:18 10 5 - 15

00:20 11 6 1 18

00:22 12 7 2 21

00:24 13 8 3 24

00:26 14 9 4 27

00:28 15 10 5 30

Figure 3c shows how long it would have taken for a stream

processing system with 1 FaaS over 3 FaaS to reach 30 FaaS

Function Container instances. Table 1 shows the number of

instances provisioned by each FaaS at certain time intervals.

http://www.ijitee.org/

A QoS-Latency Aware Event Stream Processing with Elastic-FaaS

3761

Published By:

Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: J99650881019/19©BEIESP

DOI: 10.35940/ijitee.J9965.0881019

Journal Website: www.ijitee.org

The single FaaS would have taken nearly sixty time units

comparing to the three FaaS which took less than thirty time

units. Figure 3d shows how the ingestion and throughput are

balanced by our algorithm. When the system was started, the

input rate was higher, and there was less throughput that

caused the load shedding.

After the Elastic-FaaS started adding the Functions

one-by-one the throughput increased gradually, and at certain

stage the system was able to process the input load without

much latency and with high throughput. The total number of

high-value and low-value transactions became accurate after

our algorithm’s elastic provisioning, since the load-shedding

was avoided by the high availability of containers.

VII. CONCLUSION AND FUTURE WORK

We presented a novel elastically scalable Elastic-FaaS

algorithm that increases the availability of the stream

processing systems whenever there is a load. It is able to

control the number of FaaS containers provisioned by

adjusting QoS-latency requirement. The experimental result

shows that our algorithm gets rid of the load shedding issue

by improving the systems availability which in turn increases

the throughput that meets the high accuracy and low latency

requirements. This makes our Elastic-FaaS algorithm to

perform better than typical FaaS. This algorithm can be

explored in many real-time on-demand deployment scenarios

where elastic scalability is highly required in short span of

time. In future, we will focus on integrating this algorithm

with real life applications and also with other widely used

recent stream processing systems. Also, since FaaS has been

changing the way the stream processing and mining systems

worked in the past, we will further work on increasing the

availability of the FaaS containers by resolving the cold-start

issues [19].

REFERENCES

1. B. Gedik, S. Schneider, M. Hirzel and K. Wu, "Elastic Scaling for Data
Stream Processing," in IEEE Transactions on Parallel and Distributed

Systems, vol. 25, no. 6, pp. 1447-1463, June 2014. doi:

10.1109/TPDS.2013.295
2. Cervino, J.; Kalyvianaki, E.; Salvachua, J.; Pietzuch, P., "Adaptive

Provisioning of Stream Processing Systems in the Cloud," Data
Engineering Workshops (ICDEW), 2012 IEEE 28th International

Conference on, vol., no., pp.295,301, 1-5 April 2012

3. J. Kathirvel and E. Parasuraman, "Effective data stream mining using
ensemble on cloud with load balancing (E2CL)," 2015 International

Conference on Computing and Communications Technologies
(ICCCT), Chennai, 2015, pp. 383-386. doi:

10.1109/ICCCT2.2015.7292780

4. Heinze, T., Ji, Y., Pan, Y., Grüneberger, F.J., Jerzak, Z., & Fetzer, C.
(2013). Elastic Complex Event Processing under Varying Query

Load. BD3@VLDB.

5. B. Lohrmann, P. Janacik and O. Kao, "Elastic Stream Processing with

Latency Guarantees," 2015 IEEE 35th International Conference on

Distributed Computing Systems, Columbus, OH, 2015, pp. 399-410.
doi: 10.1109/ICDCS.2015.48

6. T. Heinze, V. Pappalardo, Z. Jerzak and C. Fetzer, "Auto-scaling
techniques for elastic data stream processing," 2014 IEEE 30th

International Conference on Data Engineering Workshops, Chicago, IL,

2014, pp. 296-302.
doi: 10.1109/ICDEW.2014.6818344

7. Lorido-Botran, Tania et al. “A Review of Auto-scaling Techniques for
Elastic Applications in Cloud Environments.” Journal of Grid

Computing 12 (2012): 559-592.

http://www.ijitee.org/

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075 (Online), Volume-8 Issue-10, August 2019

3762

Published By:

Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: J99650881019/19©BEIESP

DOI: 10.35940/ijitee.J9965.0881019

Journal Website: www.ijitee.org

8. Brogi A., Mencagli G., Neri D., Soldani J., Torquati M. (2018)
Container-Based Support for Autonomic Data Stream Processing

Through the Fog. In: Heras D. et al. (eds) Euro-Par 2017: Parallel

Processing Workshops. Euro-Par 2017. Lecture Notes in Computer

Science, vol 10659. Springer, Cham

9. M. R. HoseinyFarahabady, A. Y. Zomaya and Z. Tari, "A Model
Predictive Controller for Managing QoS Enforcements and

Microarchitecture-Level Interferences in a Lambda Platform," in IEEE
Transactions on Parallel and Distributed Systems, vol. 29, no. 7, pp.

1442-1455, 1 July 2018. doi: 10.1109/TPDS.2017.2779502

10. HoseinyFarahabady M., Lee Y.C., Zomaya A.Y., Tari Z. (2017) A
QoS-Aware Resource Allocation Controller for Function as a Service

(FaaS) Platform. In: Maximilien M., Vallecillo A., Wang J., Oriol M.
(eds) Service-Oriented Computing. ICSOC 2017. Lecture Notes in

Computer Science, vol 10601. Springer, Cham

11. Ali Kanso and Alaa Youssef. 2017. Serverless: beyond the cloud.
In Proceedings of the 2nd International Workshop on Serverless

Computing (WoSC '17). ACM, New York, NY, USA, 6-10. DOI:
https://doi.org/10.1145/3154847.3154854

12. Stefan Brenner and Rüdiger Kapitza. 2019. Trust more, serverless.

In Proceedings of the 12th ACM International Conference on Systems
and Storage (SYSTOR '19). ACM, New York, NY, USA, 33-43. DOI:

https://doi.org/10.1145/3319647.3325825

13. J. Kuhlenkamp and S. Werner, "Benchmarking FaaS Platforms: Call for

Community Participation," 2018 IEEE/ACM International Conference

on Utility and Cloud Computing Companion (UCC Companion),
Zurich, 2018, pp. 189-194.

doi: 10.1109/UCC-Companion.2018.00055
14. C. Pahl, "Containerization and the PaaS Cloud," in IEEE Cloud

Computing, vol. 2, no. 3, pp. 24-31, May-June 2015.

doi: 10.1109/MCC.2015.51
15. W. Felter, A. Ferreira, R. Rajamony and J. Rubio, "An updated

performance comparison of virtual machines and Linux
containers," 2015 IEEE International Symposium on Performance

Analysis of Systems and Software (ISPASS), Philadelphia, PA, 2015,

pp. 171-172. doi: 10.1109/ISPASS.2015.7095802
16. Cristina L. Abad, Edwin F. Boza, and Erwin van Eyk. 2018.

Package-Aware Scheduling of FaaS Functions. In Companion of the
2018 ACM/SPEC International Conference on Performance

Engineering (ICPE '18). ACM, New York, NY, USA, 101-106. DOI:

https://doi.org/10.1145/3185768.3186294
17. M. Sewak and S. Singh, "Winning in the Era of Serverless Computing

and Function as a Service," 2018 3rd International Conference for
Convergence in Technology (I2CT), Pune, 2018, pp. 1-5. doi:

10.1109/I2CT.2018.8529465

18. Baldini I. et al. (2017) Serverless Computing: Current Trends and Open
Problems. In: Chaudhary S., Somani G., Buyya R. (eds) Research

Advances in Cloud Computing. Springer, Singapore
19. J. Manner, M. Endreß, T. Heckel and G. Wirtz, "Cold Start Influencing

Factors in Function as a Service," 2018 IEEE/ACM International

Conference on Utility and Cloud Computing Companion (UCC
Companion), Zurich, 2018, pp. 181-188. doi:

10.1109/UCC-Companion.2018.00054
20. Serverless Architectures - Martin Fowler,

https://martinfowler.com/articles/serverless.html

21. Batch Processing vs Real Time Processing – Comparison,
https://data-flair.training/blogs/batch-processing-vs-real-time-processin

g/
22. Azure Functions scale and hosting,

https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale

23. Azure Functions Trigger – scaling,

https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindi

ngs-event-hubs#trigger---scaling
24. Azure Function CLI,

https://docs.microsoft.com/en-us/azure/azure-functions/functions-creat

e-first-azure-function-azure-cli
25. AWS scaling,

https://docs.aws.amazon.com/lambda/latest/dg/scaling.html
26. AWS concurrent executions,

https://docs.aws.amazon.com/lambda/latest/dg/concurrent-executions.h

tml

AUTHORS PROFILE

Jagadheeswaran Kathirvel is pursuing his doctorate in

Department of Computer Science at Bharathiar University,

India. His area of interests includes data stream processing, data
mining, artificial intelligence, along with event driven software

architecture, design, and engineering. He completed his master’s degree in
computer applications in 2007 at Bharathiar University, and bachelor’s

degree in computer science at Periyar University, India, in 2003.

Elango Parasuraman is working as an Assistant Professor in

Department of Information Technology at Perunthalaivar
Kamarajar Institute of Engineering and Technology, Karaikal,

India. His area of interests includes image processing, data

mining, and web mining. He completed his Ph.D., at National Institute of

Technology Tiruchirappalli, India, in 2011, and his M.Tech., at National

Institute of Technology Karnataka, India, in 2005.

http://www.ijitee.org/
https://martinfowler.com/articles/serverless.html
https://data-flair.training/blogs/batch-processing-vs-real-time-processing/
https://data-flair.training/blogs/batch-processing-vs-real-time-processing/
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-event-hubs#trigger---scaling
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-event-hubs#trigger---scaling
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-function-azure-cli
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-function-azure-cli
https://docs.aws.amazon.com/lambda/latest/dg/scaling.html
https://docs.aws.amazon.com/lambda/latest/dg/concurrent-executions.html
https://docs.aws.amazon.com/lambda/latest/dg/concurrent-executions.html

