
International Journal of Innovative Technology and Exploring Engineering (IJITEE) 

ISSN: 2278-3075 (Online), Volume-8 Issue-10, August 2019 

2978 

Published By: 
Blue Eyes Intelligence Engineering 

and Sciences Publication (BEIESP) 

© Copyright: All rights reserved. 

Retrieval Number: J11350881019/19©BEIESP 

DOI: 10.35940/ijitee.J1135.0881019 

Journal Website: www.ijitee.org 

  

Abstract:  A new directed backward variant of the Single 

Source Shortest Path algorithm was described   in this paper. This 

algorithm accept that approaching adjacency list of the given 

graph vertex loads showed up in expanding request. The running 

time of forward, based strategy algorithm is the best aftereffect of 

O (n), which are the most ideal forward-backward SSSP 

consequences of Wilson et al. Moreover, the likelihood of the new 

algorithm additionally requires O (n) time.This is an equally 

improved version of exponentially and polynomial small 

probability derived by Wilson et al. 

 
Keywords - shortest path, backward algorithm, directed graph, 

directed backward algorithm. 

I. INTRODUCTION 

  The Single Source Shortest Path Algorithm solved by 

Bellman-Ford O (mn) time with the suspicion  of all the edge 

weights have positive values. Dijkstra’s [1] takes the time to 

solve this algorithm in O (m+nlogn). Thorup [2] found an 

algorithm with the runtime of  O (m+n). 

 Thorup’s algorithm and Dijkstra’s algorithm are linear 

runtime and linear in the input-graph size. Spira’s algorithm 

solves Single Source Shortest Problem  by  O (nlog2n) time. 

Later, this result was improved by many researchers like 

Takoka and Moffat [3] to O(n2 log n log log n). And  Bloniarz 

[4] improved to O(n2 logn log*n). The directed backward 

SSSP algorithm is developed by us has runtime O (n) and it is 

implemented in two steps. 

II. FORMULATION OF THE ALGORITHM 

A. A New Directed Backward algorithm for  Single 

Source Shortest Path 

This algorithm produces the shortest way from z to y i.e, 

from destination vertex z to the source vertex y in a directed 

graph G = (V,E)  with non-negative weight. Start by dist [z] = 

0 while dist [y] = ∞ for every y ≠ z. At the point when Spira's 

algorithm [5] endeavors to enhance Dijkstra's algorithm, it 

considered the out-going edges of every vertex x in 

expanding request of weight.  In any case, when we improve 

the Spira's algorithm with a backward algorithm idea we set 

the in-coming edges of every vertex z in the diagram are 

given is non-diminishing order of weight. The out-going 

 
 

 

Manuscript published on 30 August 2019. 
*Correspondence Author(s) 
D. Jasmine Priskilla, Ph.D Research Scholar, Research and Development 

Centre,  Bharathiar University, Coimbatore, Tamilnadu, India.  

Dr. K.  Arulanandam, Head, Department of Computer Applications, GTM 
College,  Gudiyattam, Tamilnadu, India.  

 
© The Authors. Published by Blue Eyes Intelligence Engineering and 

Sciences Publication (BEIESP). This is an open access article under the 

CC-BY-NC-ND license http://creativecommons.org/licenses/by-nc-nd/4.0/ 
 

edges of x are checked individually in Spira's algorithm. The 

algorithm discovers all vertices whose good ways from y is 

littler than dist[x] + cost [x,z1] by sweeps out- going edge 

(x,z), where (x,z1) is edge going before (x,z) in the adjacency 

list of x. This algorithm maintains the priority queue PQ to 

hold edges rather than vertices. The distance dist[x] from y to 

x is calculated based on the key value of edges (x,z) in PQ, 

and PQ= dist[x]+cost[x,z]. This directed backward algorithm 

examines the in-coming edges of z individually. The 

algorithm filters an in-coming edge (x,z) simply after it 

discovers all vertices whose distance to z is littler than 

dist[z]+cost[x,z], where (x1,z) is the edge going before (x,z) 

in the adjacency list of z. To acquire this outcome, the 

priority queue PQ hold edge instead of vertices. The edge (x,z) 

is a key in PQ is dist[z]+cost[x,z], If it is accessible in PQ 

then the dist[z] is now set to distance from x to z, and the edge 

(x,z) is a key in PQ is dist[z]+cost[x,z] . 

This algorithm keeps up a set Y⊆Z, where Z contains all 

vertices whose good ways from Z was at that point decided. 

At first Y={Z}. On the off chance that yϵY, the dist[y] is the 

good ways from z to y. On the off chance that y≠Y, at that 

point dist[y]= ∞. On the off chance that yϵY \{z}, at that 

point (path[y],y) is the last edge of a way of length dist[y] 

from z to y. At first set dist[z]=0, while dist[y]= ∞ for each y

≠z, and path[y]=null for each yϵZ. 

This new algorithm begins by checking the in-coming edges 

(y,z) of z and embeddings it into the priority queue PQ with 

the key worth dist[z] +cost[y,z]= cost[y,z] from PQ in every 

cycle of the algorithm extricates an edge (x,z) with the littlest 

key dist[z]+cost[x,z], in the event that (x,z) isn't the toward 

the end in-coming edge of z, at that point the edge (x1,z) that 

tails it in the adjacency list of z is embedded into PQ with key 

dist[z]+cost[x1,z]. On the off chance that xϵY, at that point 

dist[z]+cost[x,z], the key of (x,z) is the distance to x, Thus, 

dist[x] is set to dist[z]+cost[x,z], PQ[x] is set to z, x is added 

to Y, and the first in-coming edge (w,x) of x, on the off 

chance that it is accessible in examined and embedded into 

PQ. This new algorithm additionally embeds an edge (x,z) 

into PQ regardless of whether xϵY or if PQ as of now 

contains an edge (x,z1) with 

dist[z1]+cost[x,z1]<dist[z]+cost[x,z], when (x,z) is separated 

from PQ, the algorithm realizes that the time has come to 

filter the following in-coming edge of Z. The pseudo-code of 

the algorithm is given in Fig.1. Every vertex of zϵZ has a 

adjacency list In[z] of its in-coming edges arranged in rising 

request of weight. The perspective on In[z] is as a rundown of 

edges, every datum in In[z] is a vertex, the opposite end 

purpose of the edge that comes towards Z.  

 

 

 
 

A Backward Single Source Shortest Path 

Algorithm For Directed Graph 
 D. Jasmine Priskilla, K. Arulanandam 

http://www.ijitee.org/
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijitee.J1135.0881019&domain=www.ijitee.org


 

A Backward Single Source Shortest Path Algorithm For Directed Graph 

2979 

 

Published By: 
Blue Eyes Intelligence Engineering 

and Sciences Publication (BEIESP) 

© Copyright: All rights reserved. 

Retrieval Number: J11350881019/19©BEIESP 

DOI: 10.35940/ijitee.J1135.0881019 

Journal Website: www.ijitee.org 

The usage of this algorithm utilizes a function backward(z) 

that gets the following in-coming edge of the z and adds it, in 

the event that it exits, into PQ with key the dist[z]+cost[z,x]. 

The following in-coming edge is determined by calling 

before(In[z]). The function before(In[z]) restores the edge 

right now indicated and goes in backward the pointer to the 

past edge in the list, generally on the off chance that the list is 

unfilled, at that point before(In[z]) return invalid. Reset(In[z]) 

makes this pointer point to the primary edge of the list. 

B.  Proposed Algorithm for Directed Backward Single 

Source Shortest Path 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1 Shortest path algorithm. 

C.  Analysis of the Algorithm 

Spira's algorithm demonstrates that the Single Source 

Shortest Problem utilizing the forward technique on  κ n 

(EXP(1)) can be tackled in O(n) time, But in the directed 

backward Single Source Shortest Problem algorithm the 

in-coming adjacency lists were utilized. We build up the new 

O(n) time directed backward  Single Source Shortest 

Problem algorithm in two stages. In the initial step the 

algorithm looks at O (n) edge of the graph. In the subsequent 

advance, the algorithm is actualized to keep running in O (n) 

time. As the algorithm of Single Source Shortest Problem  

this algorithm additionally utilizes priority queue. During 

execution it takes O (n) time, and it needs to perform priority 

queue tasks expected in O (1) time. The distance of the 

primary (n/2) vertices are determined during the principal 

phase of the procedure. The relevance states of the algorithm 

is expressly checks in the second phase of the procedure. At 

the point when non in-appropriate edges are achieved, this 

algorithm quits checking of the in-coming adjacency lists. 

  Example 1. 

The following Fig.2 shows the directed weight graph taken 

forward to prove the algorithm. Now, we have traced the 

shortest path vale from node S to node Z. This algorithm uses 

backward search for the shortest path. So the search begins 

from node Z and the In-coming node of  Z is analyzed up to 

the initial value node S found. 

 

 

 

 

 

 

 

 

Fig.2 Directed weight graph G1. 

After Initialization dist values changed for each process as in 

Table 1, and when node S selected as a new node to process, 

the searching operation is completed. From this example, 

initially the process starts from node Z and completed when it 

reaches the node S. The shortest value for S->Z is 60. 

 

Table 1. Distance values between source and destination. 

 

 S T U V W X Y Z 

1 ∞ ∞ 20 ∞ ∞ ∞ ∞ ∞ 

2 ∞ ∞ 20 30 ∞ 30 ∞ ∞ 

3 110 ∞ 20 30 ∞ 30 ∞ ∞ 

4 110 40 20 30 ∞ 30 ∞ ∞ 

5 60 40 20 30 90 30 ∞ ∞ 

 The path values are created as follows from the values in 

Table 1. Initially it starts from node Z and the In-coming path 

is from node U is shown in Table 2 as U->Z.  From Table 2 

we found that the path between node S-> Z is [S -> T -> X -> 

U ->Z] utilizing backward search method. 

 

 

 

 

Algorithm Shortest (G = (V,In,cost),z) 

 

Y ← {z}; PQ ← ϕ 

for all xϵZ do 

{ 

dist [x] ← ∞ 

PQ[x] ← null 

reset (In[x]) 

} 

dist [z] ← 0 

backward (z) 

while Y ≠ Z and PQ ≠ ϕ do 

{ 

(z,x) ← mindistance (path) 

backward (z) 

if (xϵY) Then 

{ dist [x] ← dist[z] + cost[x,z] 

PQ [x] ← z 

Y ← Y U {x} 

backward (x) 

} 

} 

function backward(z) 

{ 

x ← before (In[z]) 

if x ≠ null then 

insert (PQ,(z,x), dist[z]+cost[x,z]) 

} 

 

90 

50 

80
 B 

 

40 

30 

20 20 

10 

20 

20 

10 

50 

10
 B 

 

W 

Y 

S 

X 

Z 

U 

V 

T 

http://www.ijitee.org/


International Journal of Innovative Technology and Exploring Engineering (IJITEE) 

ISSN: 2278-3075 (Online), Volume-8 Issue-10, August 2019 

2980 

Published By: 
Blue Eyes Intelligence Engineering 

and Sciences Publication (BEIESP) 

© Copyright: All rights reserved. 

Retrieval Number: J11350881019/19©BEIESP 

DOI: 10.35940/ijitee.J1135.0881019 

Journal Website: www.ijitee.org 

Table 2. Path between selected nodes 

  

  S T U V W X Y Z 

Stage1 - - [U-Z] - - - - - 

Stage 2 - - [U-Z] [V-U-Z] - [X-U-Z] - - 

Stage 3 [S-V-U-Z] - [U-Z] [V-U-Z] - [X-U-Z] - - 

Stage 4 [S-V-U-Z] [T-X-U-Z] [U-Z] [V-U-Z] - [X-U-Z] - - 

Stage 5 [S-T-X-U-Z] [T-X-U-Z]] [U-Z] [V-U-Z] [W-T-X-U-Z] [X-U-Z] - - 

 

 

  Example 2. 

 

 

 

 

 

 

 

 

Fig.3 Directed weight graph G2 

 

  

Shortest Path Value 

No. of  comparison for 

selection of shortest path 

Forward 

Method 

Backward 

Method 

Forward 

Method 

Backward 

Method 

V →  S 6 6 2 2 

V → T 8 8 6 3 

V →  U 2 2 1 1 

V →  W 2 2 2 1 

V →  X 5 5 4 3 

V →  Y 4 4 3 1 

Table 3. The shortest distance values and number of 

comparisons between different pairs of the edges in Fig.3 

 

FIG.4 GRAPH FOR NUMBER OF COMPARISON IN                        

SELECTION OF SHORTEST PATH BETWEEN FORWARD AND   

BACKWARD METHODS OF TABLE 3. 

 

Table 4. The shortest distance values and number of the 

comparisons between different pairs of the edges in 

Fig.3 

  

Shortest Path Value 

No. of  comparison for 

selection of shortest 

path 

Forward 

Method 

Backward 

Method 

Forward 

Method 

Backward 

Method 

T →  S 9 9 5 3 

T → U 5 5 2 3 

T →  V 3 3 2 3 

T →  W 5 5 3 3 

T →  X 8 8 5 5 

T →  Y 7 7 4 3 

 

 

Fig.5 Graph for number of comparison in selection 

of the shortest path between forward and backward 

methods of Table 4. 

I. VERIFYING THE SHORTEST PATH 

ALGORITHM 

Before finding the algorithm solution, let us consider the 

following graphs G1 & G2 for the algorithm proof. This will 

enable us to exhibit the new shortest path algorithm and 

clarify how backward checking of edges have improved the 

effectiveness. From these graphs, we can conclude that both 

forward method and backward method take the nearest 

number of comparisons to produce the shortest path value. 

From this graph, we also conclude that in average cases 

backward search method takes less comparison compared to 

forward method. 

 

 

 

 

3 

1 

2 

2 

4 6 

10 

X Y 

W 

5 

8 

2 

1 

4 

U 

S 

V 

T 

http://www.ijitee.org/


 

A Backward Single Source Shortest Path Algorithm For Directed Graph 

2981 

 

Published By: 
Blue Eyes Intelligence Engineering 

and Sciences Publication (BEIESP) 

© Copyright: All rights reserved. 

Retrieval Number: J11350881019/19©BEIESP 

DOI: 10.35940/ijitee.J1135.0881019 

Journal Website: www.ijitee.org 

A.  A BACKWARD VERIFICATION ALGORITHM 

 The normal number of edges inspected by the backward 

check algorithm is kept running on Single Source Shortest 

Path of κ n(EXP(1), is (1+O (1)) n log n. It isn't hard to check 

the backward algorithm by edges assessment, when the given 

tree is to be sure a tree of the most shortest paths, which are 

actually accessible in Spira's algorithm [6].  It filters the 

in-coming adjacency list of every vertex z, confirming the 

condition cost[x,z] ≥ dist[x] - dist[z], until it experiences an 

edge (z,x) in which cost[x,z] ≥ D - dist[z]. With this, the 

algorithm additionally utilizes conventional 

comparison-based priority queues of Williams [7] require 

O(log n) time. The straightforward adjustment of bucket 

based priority queue, and the part action of buckets into 

binary heaps just O(1) time per activity with high likelihood, 

and it permits executing Spira algorithm in O(n) time. 

II. CONCLUSION 

We introduced  a new Single Source Shortest Path 

algorithm that works with backward method. The main 

concept of this algorithm  rest on Spira’s forward algorithm. 

From our implementations of the result analysis of the graphs 

we conclude that our backward algorithm also finds the same 

shortest path value in all possible paths between various sets 

of edges. From this, we conclude that this algorithm  solves 

the Single Source Shortest Problem of complete directed 

graph with exponential edge weights, optimal and high 

probability  in O (n) time. 

REFERENCES 

1. E. W. Dijkstra. “A note on two problems in connexion with 

graphs”,1959, pp. 269-271.    
2. Mikkel Thorup. “Undirected single-source shortest paths with positive 

integer weights in linear time”, J. ACM, 1999, pp.362-394. 

3. Tadao Takaoka and Alistair Moffat.  “An O(n2log n log log n) expected 
time algorithm for the all shortest distance problem”. In Mathematical 

foundations of computer science, 1980 (Proc. Ninth Sympos., Rydzyna, 
1980), volume 88 of Lecture Notes in Comput. Sci., Springer, Berlin, 

1980, pp. 643-655.  

4. Peter A. Bloniarz. “A shortest-path algorithm with expected time 
O(n2log n log*n)”, 1983, pp.588-600. 

5. P. M. Spira. “A new algorithm for finding all shortest paths in a graph of 
positive arcs in average time O(n2log2n)”, 1973, pp. 28-32. 

6. David B.Wilson and Uri Zwick.” A forward-backward single-source 

shortest paths algorithm”, IEEE 54th Annual Symposium on 
Foundations of Computer Science, 2013, pp.707-716. 

7. J.W.J. Williams. Algorithm 232: Heapsort. Communications of the 
ACM, 1964, pp.347-348. 

AUTHORS PROFILE 

Ms. D.JASMINE PRISKILLA pursued Bachelor of Science from 
University of Madras, in 1998. Master of Science from Bharathidasan 

University in 2000 and Master of Philosophy in 2002 from Mother Teresa 

University. She is currently working as Assistant Professor in Department of 
Computer Science and Computer Applications, Adhiyaman Arts and 

Science College for Women, Uthangarai, Tamilnadu, India. Her main 
research interest is in the area of Algorithms, Data Structures and 

Programming Languages. She has 19 years of teaching experience and 14 

years of research experience. 
 

Dr.   K. ARULANANDAM  is currently working as Assistant Professor & 
Head in the Department of Computer Science and Applicatuibs, Government 

Thirumagal Mills College, Gudiyattam. He has published several papers in 

reputed National and International jounals. He has 17 years experience in 
teaching and research experience. 

 
 

 
 

 

 

 

 
 

 
 

 

 
 

 
 

 

http://www.ijitee.org/

