
International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075 (Online), Volume-8 Issue-10, August 2019

4173

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: J10510881019/19©BEIESP

DOI: 10.35940/ijitee.J1051.0881019

Journal Website: www.ijitee.org

Abstract: A number of software metrics estimate the

complexity of software program by a couple of substantial

software attributes and trends. Metric for measuring the reliability

is extraordinary among the presently available complexity metrics

by contemplating a non-physical attributes i.e. readability.

Readability may be a key quality attribute for managing software

source codes. Readability of the source code is mainly concerned

with code maintainability which is a significant characteristic of

software quality, mainly from the developers’ perspective. As the

code is readable, the easier it is to modify, lesser errors, copious

maintainable, easy to reuse and even more reliable. Readability is

employed to enhance source codes for subsequent maintenance

and extensibility. But code readability is not simply computable

while dealing with open source software as contributors access the

code and modify its structure according to his/her style of coding.

This nature of development begins problems for the new

contributors to understand the code structure. To enhance code

readability, In this paper, we proposed a conceptual model of

mining software repositories for software metrics in which we

proposed a set of metrics for readability of the code that is easier to

use and helpful to understand the code structure. We also mention

a mechanism to validate the proposed metrics by the data extracted

from the mining software repositories and comparing it with a

survey conducting from experts working in industries.

Keywords: Mining Software Repositories, Software Metrics,

Readability, Measurement.

I. INTRODUCTION:

Mining software repositories (MSR) are one of the

interesting and fastest growing fields within software

engineering [22]. Exact measurement is the primary

stipulation for all engineering professions; software

engineering is one amongst them. Engineers and researchers

seek to manifest functionality of the software with numbers

in the effot to assess software quality. To measure the

software attributes, a large number of quality metrics have

been proposed and tested. Several tools are also available to

gather metrics from program delineation. This valuable

collection of tools enables a user to choose the tool which is

most appropriate for his requirements. However, this has

assumed that most of the metrics tools measure, analyze and

execute the same metrics in the same fashion.

In this paper, we describe a strategy to measure the

complexity of software system by assuming their readability

[24]. Chung and Yung first presented the readability metrics

in 1990. Software industry makes use of metrics to determine

Manuscript published on 30 August 2019.
*Correspondence Author(s)

Dr. Tamanna Siddiqui: Associate Professor, Department of Computer
Science, Aligarh Muslim University, Aligarh, UP, India

Ausaf Ahmad: Research Scholar, Department of Computer Science,

Aligarh Muslim University, Aligarh, UP, India.

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the

CC-BY-NC-ND license http://creativecommons.org/licenses/by-nc-nd/4.0/

the complexity of software to measure the development cost,

development control, software testing, quality assurance as

well as the maintenance [23] [3], [7], [4]. Nearly all software

metrics gauge the complexity of software by one or more

characteristics of the software system. Commonly software

attributes classified into three categories that are used to

gauge the complexity, these are size, control flow, and data

flow [5]. These three categories are considered as physical

activities of software development. A.J. Albrecht and J. E.

Gaffney [6] have considered the readability as excellent

metrics among the available software complexity metrics and

assumed a non-physical attribute. Use of readability metrics

are a great practice in indicating the supplementary efforts

essential for less readable software and assist to keep the

software systems maintainable. However, due to a large

number of metrics and complex formulation, it is exhaustive

to employ readability metrics in large and complex software.

In the proposed conceptual model, we formulate a simple

strategy for readability measurement. In this we keep the

number of required measures less for the readability. We

hope that the experimental results will show that this simple

strategy has the best predictive ability in determining

software complexity in terms of readability and its ease of

employing the architecture proposed. The exercise of

applying readability metrics shows the ability of readability

of software which in turn assists in retaining code readable

and maintainability. Readability attributes of software system

offer something connected to software as well as its quality.

In reality, readability offers judgment of peoples in terms of

easier reading and understanding of particular source code.

This metric possibly endorses ease of maintainability and

entire quality of the code. As it is mentioned in [8],

maintenance is a difficult and costly task as it takes 70% of its

whole development cost. Aggarwal et al [11] states that

maintainability is the most critical task of SDLC which

consumes most of the time, efforts and cost [9], [12], [14].

According to Marctty and Elshoff [13], readability of code

plays a valuable role in such a manner that when some

additional functionality is added during maintenance of

SDLC, it is to be considered as code readability improvement

phase. Knight and Myers [16] suggest that software

inspection phase ought to be checking out the source code to

confirm the code readability. This mechanism of

development will ensure the ease of maintainability,

portability as well as the reusability of source code. Haneef

[17] worked out to extent to include a documentation team in

his development team with the intention that well-established

guidelines of readability can benefits the reviewers of the

code. As explained in [8] and [20], developers have certain

sort of intuition toward the concept and characteristics of the

program, so readability becomes important and

consequently, comments in the codes

endorse readability.

Mining Software Repositories for Software

Metrics (MSR-SM): Conceptual Framework
Tamanna Siddiqui, Ausaf Ahmad

http://www.ijitee.org/
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijitee.J1051.0881019&domain=www.ijitee.org

Mining Software Repositories for Software Metrics (MSR-SM): Conceptual Framework

4174

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: J10510881019/19©BEIESP

DOI: 10.35940/ijitee.J1051.0881019

Journal Website: www.ijitee.org

Dijkstra [18] states that readability of source code is

influenced by many factors, for example, ease of control

sequences, comments, approach adapted and so on.

This paper is arranged into four sections: Section 2 describes

some metrics related to readability. Section 3 describes the

proposed framework used to mining software repositories for

software metrics and last section concludes the proposed

framework and the presented research work.

II. RELATED METRICS FOR READABILITY

In this section, we will discuss traditional readability

formulas, namely ARI, SMOG, Gunning’s Fog Index,

Flesch-Kincaid Readability Index and Coleman-Liau Index.

These are simple formulas that measure code readability

based on sentence length, word count or syllable count found

in the text.

I. The Automated Readability Index (ARI):

Sentence and word difficulty ratios are used in ARI

(Automated Readability Index) [19]. Here word difficulty

implies the total number of letters contained within a word

whereas sentence difficulty implies the total number of words

contained within a sentence. The syllable count is not

reliable. The equation to compute readability with ARI is

(1)

II. SMOG: G Harry Mclaughlin in 1969 proposed the

readability metric named SMOG [10]. The term SMOG

stands for Simple Measure of Gobbledygook. This metric

evaluates the time (in years) required by any person to read

the text. It is said to be an improved readability formula when

compared with other existing metrics of that time.

(2)

III. Gunning’s Fog Index: This metric was proposed by

Robert Gunning [1]. The FOG metric value can be calculated

by adding the average sentence length to the percentage of

hard word. And the average sentence length is calculated by

the ratio of words count to the total number of sentences.

 (3)

IV. Flesch-Kincaid Readability Index: Flesch Kincaid

[15] specifies the reading ease of the given code, for a

high-value readability is high and for less value that implies

code is hard to read

 (4)

V. Coleman-Liau Index: Meri Coleman and T. L. Liau

[21] give another readability index like ARI. However, it was

different from all others in estimating the use of text. This

index emphasizes on the letters per word however not on the

syllables. The Coleman–Liau index formula is:

 (5)

Although these traditional readability formulas have been

widely criticized as being a weak indicator as they do not

consider the comprehension skills of the reader i.e.

irrespective of the reader's ability to comprehend the given

text snippet, the calculation is completely based on the text

structure. However, due to the simplicity of readability

formulas, these are widely used in the literature.

III. PROPOSED FRAMEWORK

Size is among the most effective feature of software systems.

It influences the development cost and manpower. The size

of the system also has a great influence on the maintenance of

the system. Size dependent metrics show the complexity of

the developing system, particularly by its size characteristics.

Most of these size base metrics aid in predicting the expenses

on maintenance of the software system and during the

maintenance readability plays an extraordinary role. In order

to measure and improve the readability of codes, we

proposed a conceptual framework that is depicted in figure 1.

In this conceptual framework, we categorize each necessary

module which will come under the proposal of metrics and

for its validation. The framework is mainly divided into three

phases. Initiation phase which describes the selection of

software repositories, Implementation phase which includes

the code extraction process, proposed metrics and its

validation with extracted source code and finally, reporting

phase which deals with the comparison of outcomes of

proposed metrics to industry scope, and the recommendation

for future release. Each phase is discussed in detail in the

following sections.

Figure 1: Mining Software Repositories for Software

Metrics (MSR-SM): Conceptual Framework

3.1. Phase-I Initiation Phase

In Initiation Phase, we describe the structure of software

repositories in detail and determine the selection of

repository.

Software Repositories:

Software repositories are usually a storage location where the

source codes and related documents of softwares are

maintained. From these repositories, we could download,

source code, configuration files and related items of the

software maintained in this repository. In sync with

development perspective, software repositories also

contained a variety of information about the software system

and its development which can be retrieved, edited and used

by the developers.

http://www.ijitee.org/

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075 (Online), Volume-8 Issue-10, August 2019

4175

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: J10510881019/19©BEIESP

DOI: 10.35940/ijitee.J1051.0881019

Journal Website: www.ijitee.org

Mainly software publishers and software organization

developed and maintain such repositories online, either in

open source mode or subscription mode. These repositories

contain a variety of project data which may be utilized for

understanding the nature and structure of projects. Currently,

this field is taking a great importance within the software

researcher community.

3.2. Phase-II: Implementation

Implementation phase covers the extraction of code

information from repositories and proposed metrics along

with its validation with extracted data from repositories. All

the modules within this phase are described in detail below.

Code Extraction:

As we mentioned above that software repositories contain

valuable information which can be used for better software

development by the different development personnel at

different stage. The information can be requirement

documents, source code, comment in the source code, bugs

information, release of software etc. Researchers mine data

and metadata in a software repository to extract pertinent

information and/or uncover relationships or trends about

various characteristic. For example, one may be interested in

the growth of a system, others in change of relationship

between source code entities and some in reuse of

components.

Here, we have extracted the number of lines of source code,

the total number of single line comments and multi-line

comments and also the number of blank lines to determine

the exact lines of code. This further will be investigated to get

the variation between these metrics in incremental versions.

This extracted information will be used to validate our

proposed metrics.

Metrics Derivations:

This module refers to the derivation of several (Set of

metrics) metrics. These metrics can be used to measure the

readability of software and change of readability metrics of

the code for the software across versions. This readability

metric can help the developers and managers to easily

find the best way of coding practice. Accordingly,

developers can adapt the code; work on it to

enhance its functionality according to their needs

and maintain it easily. While taking on overall

development perspective, this situation leads to

time and cost saving.

Proposed Metrics:

We have worked on version control of the software

system to measure Code Readability of a project

based on the source line of code (LOC) and source

code comments (SCC) contained and define as

 % (1)

Where #LOC is the total number of lines of code, #SCC is the

total number of source code comments. Here, #SCC contains

the single lines of comments and multiple lines of comments

excluding blank lines. #LOC contains physical lines of codes

excluding blank lines and braces.

We also measure the enhanced readability index between two

versions of the software project to check how readability

changes from one version to the next for better readability.

(2)

Here, indicate the enhanced CRI and are

the code readability index of nth and (n-1)th versions of

software program respectively.

Another proposed metric to enhance the readability of the

code component is to count the average number of code lines

between two set of comments. We also measure the average

number source code of comments in the codebase of a

software system by measuring the number of code between

every two consecutive comments.

 (3)

Where indicate the number of lines of source codes

between first and second comments in codebase. Similarly

 the number of lines of source codes between second

and third comments and so on. We have also measured the

change average number of source code comments from one

version to its previous version by Eq. 4

 (4)

 indicates the number of lines of codes

change from one version to next version.

We check how comments between codes added or deleted

with addition and deletion of function in the release of a

version with its previous one. We hope that the proposed

metrics will help to measure the readability and will be

popular because this is simple in computation and easy to

understand. Also, these metrics will promote code reusability

and ease of maintainability in cost effective mannar and in

least time frame.

3.3. Phase-III Reporting Phase

Reporting phase incorporates the results calculated from the

proposed metrics and its comparison with the IT industry

standard by conducting a survey from the developers

working on open source projects. It includes two modules i.e.

comparison with industry standard and recommendation for

future release.

Comparison with Industry Standard:

As our proposed Code Readability metrics provides the

number of comments per hundred lines of code to understand

the structure and functionality of the programs. However, the

industry scope provides the expected number of comments

between a hundred lines of codes. We involved industry

scope to keep the readability index near to threshold value i.e.

taken from the developers and managers of software projects

working on open source software. While

metrics, provide a mechanism to write at the average number

of position of code. We will check the role of

in enhancement of code readability by involving the

developers from the industry.

http://www.ijitee.org/
https://www.google.com/search?q=consecutive&spell=1&sa=X&ved=0ahUKEwjEiZv5mpzgAhWKdn0KHbolCoQQBQgrKAA

Mining Software Repositories for Software Metrics (MSR-SM): Conceptual Framework

4176

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: J10510881019/19©BEIESP

DOI: 10.35940/ijitee.J1051.0881019

Journal Website: www.ijitee.org

The need for involvement of Industry Standard:

Andrey Nikishaev a developer, states in his article [2] that

comments shows the bad code. Good code can be understood

without comments. But his practice arises problem to new

developers when the size of the software system becomes

complex. Writing comments between codes explaining what

and how the code works are deemed to be a good practice.

This practice will help to understand the code in less time. It

gives chance to the new developers to effectively understand

the code and the better his implementation of code and

maintenance. It will be a good initiative for global code

documentation.

When we talking about the open source software, the term

"open source" refers to something people can copy, study,

modify according to their need and share, because its nature

is publicly accessible. In addition to this, when someone

contributing in any software release they add comments

according to their personal interest and understanding which

may be large or may be too small depending on the

developers coding style. This insufficient number of

comments may raise difficulties to new

contributor/developers. Same difficulties may arise with a

huge number of comments. So, to maintain a balanced ratio

between source codes and comment we involve industry

experts. Here, we try to suggest a standard architecture to

code structure which provides better readability of code,

better possibility of understanding, maintaining and

reusability of codes becomes higher.

Recommendation for further Release:

The recommendation module is an important part of the

proposed framework which provides a guideline to maintain

the number of comments per hundred of lines of codes. This

module tries to give a standard to code so that new developers

can easily understand, work on it and maintain it easily. By

accepting these recommendations, the

contributors/developers can keep the ratio of code and

comments in sync with the software industry best practices.

We suppose that the results of this practice would help to

provide a standard to code particularly in the open

source environment.

IV. CONCLUSION

Software metrics measure the software attributes
from starting of its development to final product from

different perspective (development personnel’s and user

perspective) that can be quantified or is countable. Imposing

software metrics in development as well as in maintenance is

good practice for many reasons, including software

performance, planning work stuff, productivity, and other

involved activities. Readability is an additional valuable

attribute of software that provides an extensive impact on

software maintainability. The software systems with less

readable source code are recognized as more difficult to

maintain as compare to those with more readable source

code. In this paper, we have proposed a conceptual

framework of mining software repositories for software

metrics. This model is divided into three phases - initiation

phase, implementation phase, and reporting phase. Each

phase is described in detail in this paper. We have also

proposed a set of metrics related to the readability of

codebase of software which helps the developers to easily

understand the code structure, reuse the codes and maintain

it. We have also proposed a mechanism to validate the

proposed metrics with the industry standard. The extension of

this paper will be the implementation of our proposed

framework.

REFERENCES

1. The Gunning’s Fog Index (or FOG) Readability Formula”,
http://www.readabilityformulas.com/gunning-fogreadabilityformula.p

hp, retrieved December, (2018).
2. Andrey Nikishaev, “13 Simple Rules for Good Coding”,

https://hackernoon.com/few-simple-rules-for-good-coding-my-15-yea

rs-experience-96cb29d4acd9.Retrieved January, (2019).
3. J. E. Ganey, Metrics in software quality assurance, Proceedings of the

ACM CSCER '81 conference, pp 126-130, (1981).
4. D. N. and W. W. Agresti. “Comments on Resolving the Software

Science Anomaly.” J. Syst.and Software 7 (1), pp. 83-84, (1987)

5. Muhamediyeva, D. T., Abduraimov, D., & Primova, K. A. (2016).
Development of software complexes of text data recognition. BEST:

International Journal of Management, Information Technology and
Engineering (BEST: IJMITE); ISSN (Print): 2348-0513; ISSN

(Online): 2454-471X; Impact Factor (JCC): 1.5429; Index

Copernicus: 3.0, 4, 27.

6. R. S. Pressman, Software Engineering: A Practitioner's

Approach,McGrawHill, (1996).
7. Albrecht, A. J. and J. E. Gaffney, Jr. “Software Source Lines of Code,

and Development Effort Prediction: A Software Science Validation

“.IEEE Trans. Software Eng. SE-9, 6 (Nov. 1983)
8. Arthur, L. J. Measuring Programmer Productivity and Software

Quality. New York: John Wiley, (1985).
9. B. Boehm and V.R. Basili, “Software Defect Reduction Top 10 List,”

Computer, vol. 34, no. 1, pp. 135-137, Jan. (2001).

10. L.E. Deimel, Jr., “The Uses of Program Reading,” ACM SIGCSE
Bull., vol. 17, no. 2, pp. 5-14, (1985).

11. The SMOG Readability Formula, a Simple Measure of Gobbledygook.
http://www.readabilityformulas.com/smog-readability-formula.php,

Retrieved January, (2019).

12. MOHAMED, S. I. INNOVATIVE SOFTWARE DELIVERY
FRAMEWORK TO WARDS SOFTWARE APPLICATIONS

MODERNIZATION.
13. K. Aggarwal, Y. Singh, and J.K. Chhabra, “An Integrated Measure of

Software Maintainability,” Proc. Reliability and Maintainability

Symp., pp. 235-241, Sept. (2002).
14. D.R. Raymond, “Reading Source Code,” Proc. Conf. Center for

Advanced Studies on Collaborative Research, pp. 3-16, (1991).
15. Lavrischeva, E. M. (2018). The Scientific basis of Software

Engineering. International Journal of Applied and Natural Sciences

(IJANS), 7(5), 15-32.
16. J.L. Elshoff and M. Marcotty, “Improving Computer Program

Readability to Aid Modification,” Comm. ACM, vol. 25, no. 8,
pp.512-521, (1982).

17. S. Rugaber, “The Use of Domain Knowledge in Program

Understanding,” Ann. Software Eng., vol. 9, nos. 1-4, pp. 143-192,
(2000).

18. Flesch-Kincaid Readability Index
"http://www.mang.canterbury.ac.nz/writing_guidewriting/flesch.shtm

l. Retrieved December, (2018).

19. J.C. Knight and E.A. Myers, “Phased Inspections and Their
Implementation,” ACM SIGSOFT Software Eng. Notes, vol. 16, no.

3,pp. 29-35, (1991).
20. N.J. Haneef, “Software Documentation and Readability: A Proposed

Process Improvement,” ACM SIGSOFT Software Eng. Notes, vol. 23,

no. 3, pp. 75-77, (1998).
21. E.W. Dijkstra, A Discipline of Programming. Prentice Hall PTR,

(1976).
22. TAMIMI, M., ALGHAMDI, F., & YASEEN, A. A SYSTEMATIC

SNAPSHOT REVIEW OF CUSTOM-MADE SOFTWARE

ENTERPRISES FROM THE DEVELOPMENT PERSPECTIVES.
23. .The Automated Readability Index (ARI),

http://www.readabilityformulas.com/automated-readability-index.php
, retrieved January, (2019).

24. P.A. Relf, “Tool Assisted Identifier Naming for Improved Software

Readability: An Empirical Study,” Proc. Int’l Symp. Empirical
Software Eng., Nov. (2005).

http://www.ijitee.org/
http://www.readabilityformulas.com/gunning-fogreadabilityformula.php
http://www.readabilityformulas.com/gunning-fogreadabilityformula.php
https://hackernoon.com/few-simple-rules-for-good-coding-my-15-years-experience-96cb29d4acd9
https://hackernoon.com/few-simple-rules-for-good-coding-my-15-years-experience-96cb29d4acd9

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075 (Online), Volume-8 Issue-10, August 2019

4177

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: J10510881019/19©BEIESP

DOI: 10.35940/ijitee.J1051.0881019

Journal Website: www.ijitee.org

25. Coleman-Liau Index"
http://en.wikipedia.org/w/index.php?title=Meri_Coleman&ac

tion=edit&redlink=1, Retrived, December, (2018).

26. T. Siddiqui and A. Ahmad. "Data mining tools and techniques for

mining software repositories: A systematic review." In Big Data

Analytics, pp. 717-726. Springer, Singapore, (2018).
27. Ausaf Ahmad, Tamanna Siddiqui, Najeeb Ahmad Khan, "A Detailed

Phasewise Study on Software Metrics: A Systematic Literature Review
", International Journal of Scientific Research in Computer Science,

Engineering and Information Technology (IJSRCSEIT), ISSN:

2456-3307, Volume 3, Issue 3, pp.1696-1705, (2018).
28. T. Siddiqui and A. Ahmad, “Complexity Clarification through Code

Metrics” Proceedings of the 12th INDIACom; INDIACom-2018, 5th
International Conference on “Computing for Sustainable Global

Development”, pp.3746-3749, March, (2018).

AUTHORS PROFILE

Dr. Tamanna Siddiqui is presently working as

Associate Professor in the Department of Computer
Science, Aligarh Muslim University, Aligarh (UP).

She obtained her B.Sc. (Hons) and MCA from AMU,
Aligarh, and Ph.D. (Computer Science) from Jamia

Hamdard, New Delhi. Her Research Interest includes

data mining, big data, Software engineering, cloud
computing, soft computing, etc. She has rich 20 years

Teaching experience which includes national and
international universities like Jamia Hamdard (New Delhi), University of

Dammam (KSA) and Aligarh Muslim University (AMU). She has

performed different administrative responsibilities apart from teaching and
research. She has published many books and she has a rich number of

research papers in well reputed international journals.

Ausaf Ahmad is currently working as a research

scholar in the department of computer science,
Aligarh Muslim University, India. His research

interests are in software engineering and mining
software repositories. He received his MCA and

B.Sc.(Hons) degree from Aligarh Muslim University,

Aligarh, India.

http://www.ijitee.org/
http://en.wikipedia.org/w/index.php?title=Meri_Coleman&ac

