
International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075 (Online), Volume-3 Issue-2, July 2013

137

Published By:

Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: B1010073213/13©BEIESP

Journal Website: www.ijitee.org

Abstract— The fundamental concepts of Spring Framework is

presented in this paper.Spring framework is an open source Java

platform that provides comprehensive infrastructure support for

developing robust Java applications very easily and very rapidly.

The Spring Framework is a lightweight solution and a potential

one-stop-shop for building your enterprise-ready applications.

IndexTerms— Aspect Oriented Programming, Dependency

Injection, IoC Container, ORM.

I. INTRODUCTION

Spring is the most popular application development

framework for enterprise Java. Millions of developers

around the world use Spring Framework to create high

performing, easily testable, reusable code. Spring

framework is an open source Java platform and it was

initially written by Rod Johnson and was first released under

the Apache 2.0 license in June 2003.

Spring is lightweight when it comes to size and

transparency. The basic version of spring framework is

around 2MB.The core features of the Spring Framework can

be used in developing any Java application, but there are

extensions for building web applications on top of the Java

EE platform. Spring framework targets to make J2EE

development easier to use and promote good programming

practice by enabling a POJO-based programming model.

The Spring Framework provides a comprehensive

programming and configuration model for modern Java-

based enterprise applications - on any kind of deployment

platform. A key element of Spring is infrastructural support

at the application level: Spring focuses on the "plumbing" of

enterprise applications so that teams can focus on

application-level business logic, without unnecessary ties to

specific deployment environments. Spring includes:

• Flexible dependency injection with XML annotation-

based configuration styles

• Advanced support for aspect-oriented programming

with proxy-based and AspectJ-based variants.

• First-class support for common open source

frameworks such as Hibernate and Quartz

• A flexible web framework for building RESTful MVC

applications and service endpoints

Manuscript published on 30 July 2013.
*Correspondence Author(s)

Mr Dashrath Mane, Assistant Professor, Department of MCA, V.E.S.

Institute of Technology, Mumbai, India.
Miss NamrataOjha, Final Year MCA Student, V.E.S. Institute of

Technology, Mumbai, India.

Miss KetakiChitnis, Final Year MCA Student, V.E.S. Institute of
Technology, Mumbai, India.

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the

CC-BY-NC-ND license http://creativecommons.org/licenses/by-nc-nd/4.0/

Spring is modular in design, allowing for incremental

adoption of individual parts such as the core container or the

JDBC support. While all Spring services are a perfect fit for

the Spring core container, many services can also be used in

a programmatic fashion outside of the container.

Supported deployment platforms range from standalone

applications to Tomcat and Java EE servers such as

WebSphere. Spring is also a first-class citizen on major

cloud platforms with Java support, e.g. on Heroku, Google

App Engine, Amazon Elastic Beanstalk and VMware's

Cloud Foundry.[1]

II. SPRING FRAMEWORK ARCHITECTURE

Spring could potentially be a one-stop shop for all your

enterprise applications; however, Spring is modular,

allowing you to pick and choose which modules are

applicable to you, without having to bring in the rest.

The Spring Framework provides about 20 modules which

can be used based on an application requirement.

Fig. 1. Spring Framework Architecture

A. Core Container

The Core Container consists of the Core, Beans, Context,

and Expression Language modules whose detail is as

follows:

• The Core module provides the fundamental parts of the

framework, including the IoC and Dependency

Injection features.

• The Bean module provides BeanFactory which is a

sophisticated implementation of the factory pattern.

• The Context module builds on the solid base provided

by the Core and Beans modules and it is a medium to

access any objects defined and configured. The

ApplicationContext interface is the focal point of the

Context module.

• The Expression Language module provides a powerful

expression language for querying and manipulating an

object graph at runtime.

The Spring Framework: An Open Source Java

Platform for Developing Robust Java Applications

Dashrath Mane, Ketaki Chitnis, Namrata Ojha

https://www.openaccess.nl/en/open-publications
http://www.ijitee.org/
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/

The Spring Framework: An Open Source Java Platform for Developing Robust Java Applications

138

Published By:

Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: B1010073213/13©BEIESP

Journal Website: www.ijitee.org

B. Data Access/Integration

The Data Access/Integration layer consists of the JDBC,

ORM, OXM, JMS and Transaction modules whose detail is

as follows:

• The JDBC module provides a JDBC-abstraction layer

that removes the need to do tedious JDBC related

coding.

• The ORM module provides integration layers for

popular object-relational mapping APIs, including JPA,

JDO, Hibernate, and iBatis.

• The OXM module provides an abstraction layer that

supports Object/XML mapping implementations for

JAXB, Castor, XMLBeans, JiBX and XStream.

• The Java Messaging Service JMS module contains

features for producing and consuming messages.

• The Transaction module supports programmatic and

declarative transaction management for classes that

implement special interfaces and for all your POJOs.

C. Web

The Web layer consists of the Web, Web-Servlet, Web-

Struts, and Web-Portlet modules whose detail is as follows:

• The Web module provides basic web-oriented

integration features such as multipart file-upload

functionality and the initialization of the IoC container

using servlet listeners and a web-oriented application

context.

• The Web-Servlet module contains Spring's model-view-

controller (MVC) implementation for web applications.

• The Web-Struts module contains the support classes for

integrating a classic Struts web tier within a Spring

application.

D. Miscellaneous:

• The AOP module provides aspect-oriented

programming implementation allowing you to define

method-interceptors and point cuts to cleanly decouple

code that implements functionality that should be

separated.

• The Aspects module provides integration with AspectJ

which is again a powerful and mature aspect oriented

programming (AOP) framework.

• The Instrumentation module provides class

instrumentation support and class loader

implementations to be used in certain application

servers.

• The Test module supports the testing of Spring

components with JUnit or TestNG frameworks.

III. SPRING IOC CONTAINER

The Spring container is at the core of the Spring

Framework. The container will create the objects, wire them

together, configure them, and manage their complete

lifecycle from creation till destruction. The Spring container

uses dependency injection (DI) to manage the components

that make up an application. These objects are called Spring

Beans which we will discuss in next chapter.

The container gets its instructions on what objects to

instantiate, configure, and assemble by reading

configuration metadata provided. The configuration

metadata can be represented either by XML, Java

annotations, or Java code. The following diagram is a high-

level view of how Spring works. The Spring IoC container

makes use of Java POJO classes and configuration metadata

to produce a fully configured and executable system or

application.

Fig. 2. Spring IoC Container

Spring provides following two distinct types of containers.

A. Spring BeanFactory Container

This is the simplest container providing basic support for

DI. The BeanFactory and related interfaces, such as

BeanFactoryAware, InitializingBean, DisposableBean, are

still present in Spring for the purposes of backward

compatibility with the large number of third-party

frameworks that integrate with Spring.

B. Spring ApplicationContext Container

This container adds more enterprise-specific functionality

such as the ability to resolve textual messages from a

properties file and the ability to publish application events to

interested event listeners. This container is defined by

the org.springframework.context.ApplicationContextinterfac

e. The ApplicationContext container includes all

functionality of the BeanFactory container, so it is generally

recommended over the BeanFactory. BeanFactory can still

be used for light weight applications like mobile devices or

applet based applications where data volume and speed is

significant.

C. Beans

The objects that form the backbone of your application and

that are managed by the Spring IoC container are called

beans. A bean is an object that is instantiated, assembled,

and otherwise managed by a Spring IoC container. These

beans are created with the configuration metadata that you

supply to the container, for example, in the form of XML

<bean/> definitions.

D.Spring Configuration Metadata

Spring IoC container is totally decoupled from the format in

which this configuration metadata is actually written. There

are following three important methods to provide

configuration metadata to the Spring Container:

• XML based configuration file.

• Annotation-based configuration

• Java-based configuration

IV. DEPENDENCY INJECTION (DI)

The technology that Spring is most identified with is the

Dependency Injection (DI) flavour of Inversion of Control.

The Inversion of Control (IoC) is a general concept, and it

can be expressed in many different ways and Dependency

Injection is merely one concrete example of Inversion of

Control.

http://www.ijitee.org/

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075 (Online), Volume-3 Issue-2, July 2013

139

Published By:

Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: B1010073213/13©BEIESP

Journal Website: www.ijitee.org

When writing a complex Java application, application

classes should be as independent as possible of other Java

classes to increase the possibility to reuse these classes and

to test them independently of other classes while doing unit

testing. Dependency Injection helps in gluing these classes

together and same time keeping them independent. What is

dependency injection exactly? Let's look at these two words

separately. Here the dependency part translates into an

association between two classes. For example, class A is

dependent on class B. Now, let's look at the second part,

injection. All this means is that class B will get injected into

class A by the IoC.

Dependency injection can happen in the way of passing

parameters to the constructor or by post-construction using

setter methods.Consider you have an application which has

a text editor component and you want to provide spell

checking. Your standard code would look something like

this:

public class TextEditor {

privateSpellCheckerspellChecker;

publicTextEditor() {

spellChecker = new SpellChecker();

 }

}

What we've done here is create a dependency between the

TextEditor and the SpellChecker. In an inversion of control

scenario we would instead do something like this:

public class TextEditor {

privateSpellCheckerspellChecker;

publicTextEditor(SpellCheckerspellChecker) {

this.spellChecker = spellChecker;

 }

}

Here TextEditor should not worry about SpellChecker

implementation. The SpellChecker will be implemented

independently and will be provided to TextEditor at the time

of TextEditor instantiation and this entire procedure is

controlled by the Spring Framework. We have removed the

total control from TextEditor and kept it somewhere else (ie.

XML configuration file) and the dependency (ie. class

SpellChecker) is being injected into the class TextEditor

through a Class Constructor. Thus flow of control has been

"inverted" by Dependency Injection (DI) because you have

effectively delegated dependances to some external system.

Second method of injecting dependency is through Setter

Methods of TextEditor class where we will create

SpellChecker instance and this instance will be used to call

setter methods to initialize TextEditor's properties.

Dependency Injection has several important benefits. For

example:

• Because components don't need to look up collaborators

at runtime, they're much simpler to write and maintain.

In Spring's version of IoC, components express their

dependency on other components via exposing

JavaBean setter methods or through constructor

arguments. The EJB equivalent would be a JNDI

lookup, which requires the developer to write code that

makes environmental assumptions.

• For the same reasons, application code is much easier to

test. For example, JavaBean properties are simple, core

Java and easy to test: simply write a self-contained

JUnit test method that creates the object and sets the

relevant properties.

• A good IoC implementation preserves strong typing. If

you need to use a generic factory to look up

collaborators, you have to cast the results to the desired

type. This isn't a major problem, but it is inelegant.

With IoC you express strongly typed dependencies in

your code and the framework is responsible for type

casts. This means that type mismatches will be raised as

errors when the framework configures the application;

you don't have to worry about class cast exceptions in

your code.

• Dependencies are explicit. For example, if an

application class tries to load a properties file or

connect to a database on instantiation, the

environmental assumptions may not be obvious without

reading the code (complicating testing and reducing

deployment flexibility). With a Dependency Injection

approach, dependencies are explicit, and evident in

constructor or JavaBean properties.

• Most business objects don't depend on IoC container

APIs. This makes it easy to use legacy code, and easy to

use objects either inside or outside the IoC container.

For example, Spring users often configure the Jakarta

Commons DBCP DataSource as a Spring bean: there's

no need to write any custom code to do this. We say

that an IoC container isn't invasive: using it won't

invade your code with dependency on its APIs. Almost

any POJO can become a component in a Spring bean

factory. Existing JavaBeans or objects with multi-

argument constructors work particularly well, but

Spring also provides unique support for instantiating

objects from static factory methods or even methods on

other objects managed by the IoC container.

Dependency Injection is unlike traditional container

architectures, such as EJB, in this minimization of

dependency of application code on container. This means

that your business objects can potentially be run in different

Dependency Injection frameworks - or outside any

framework without code changes.

Dependency Injection is not a new concept, although it's

only recently made prime time in the J2EE community.

There are alternative DI containers: notably, PicoContainer

and HiveMind. PicoContainer is particularly lightweight and

emphasizes the expression of dependencies through

constructors rather than JavaBean properties. It does not use

metadata outside Java code, which limits its functionality in

comparison with Spring. HiveMind is conceptually more

similar to Spring (also aiming at more than just IoC),

although it lacks the comprehensive scope of the Spring

project or the same scale of user community. EJB 3.0 will

provide a basic DI capability as well.

V. ASPECT ORIENTED PROGRAMMING (AOP)

One of the key components of Spring is the Aspect

oriented programming (AOP) framework. The functions that

span multiple points of an application are called cross-

cutting concerns and these cross-cutting concerns are

conceptually separate from the application's business logic.

https://www.openaccess.nl/en/open-publications
http://www.ijitee.org/

The Spring Framework: An Open Source Java Platform for Developing Robust Java Applications

140

Published By:

Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: B1010073213/13©BEIESP

Journal Website: www.ijitee.org

There are various common good examples of aspects

including logging, declarative transactions, security, and

caching etc.

The key unit of modularity in OOP is the class, whereas

in AOP the unit of modularity is the aspect. Whereas DI

helps you decouple your application objects from each

other, AOP helps you decouple cross-cutting concerns from

the objects that they affect. The AOP module of Spring

Framework provides aspect-oriented programming

implementation allowing you to define method-interceptors

and pointcuts to cleanly decouple code that implements

functionality that should be separated. Spring AOP module

provides interceptors to intercept an application, for

example, when a method is executed, you can add extra

functionality before or after the method execution.[2]

A. AOP Concepts

• Aspect: a modularization of a concern that cuts across

multiple classes. Transaction management is a good

example of a crosscutting concern in J2EE applications.

In Spring AOP, aspects are implemented using regular

classes (the schema-based approach) or regular classes

annotated with the @Aspect annotation

(the @AspectJstyle).

• Join point: a point during the execution of a program,

such as the execution of a method or the handling of an

exception. In Spring AOP, a join

point always represents a method execution.

• Advice: action taken by an aspect at a particular join

point. Different types of advice include "around,"

"before" and "after" advice. (Advice types are discussed

below.) Many AOP frameworks, including Spring,

model an advice as an interceptor, maintaining a chain

of interceptors around the join point.

• Pointcut: a predicate that matches join points. Advice is

associated with a pointcut expression and runs at any

join point matched by the pointcut (for example, the

execution of a method with a certain name). The

concept of join points as matched by pointcut

expressions is central to AOP, and Spring uses the

AspectJpointcut expression language by default.

• Introduction: declaring additional methods or fields on

behalf of a type. Spring AOP allows you to introduce

new interfaces (and a corresponding implementation) to

any advised object. For example, you could use an

introduction to make a bean implement

an IsModified interface, to simplify caching. (An

introduction is known as an inter-type declaration in the

AspectJ community.)

• Target object: object being advised by one or more

aspects. Also referred to as the advisedobject. Since

Spring AOP is implemented using runtime proxies, this

object will always be aproxied object.

• AOP proxy: An object created by the AOP framework

in order to implement the aspect contracts (advise

method executions and so on). In the Spring

Framework, an AOP proxy will be a JDK dynamic

proxy or a CGLIB proxy.

• Weaving: linking aspects with other application types

or objects to create an advised object. This can be done

at compile time (using the AspectJ compiler, for

example), load time, or at runtime. Spring AOP, like

other pure Java AOP frameworks, performs weaving at

runtime.

VI. SPRING JDBC FRAMEWORK

While working with database using plain old JDBC, it

becomes cumbersome to write unnecessary code to handle

exceptions, opening and closing database connections etc.

But Spring JDBC Framework takes care of all the low-level

details starting from opening the connection, prepare and

execute the SQL statement, process exceptions, handle

transactions and finally close the connection.

So what you have to do is just define connection

parameters and specify the SQL statement to be executed

and do the required work for each iteration while fetching

data from the database.

Spring JDBC provides several approaches and

correspondingly different classes to interface with the

database. I'm going to take classic and the most popular

approach which makes use of JdbcTemplate class of the

framework. This is the central framework class that manages

all the database communication and exception handling.

 The JdbcTemplateclass executes SQL queries, updates

statements and stored procedure calls, performs iteration

over ResultSets and extraction of returned parameter values.

It also catches JDBC exceptions and translates them to the

generic, more informative, exception hierarchy defined in

the org.springframework.dao package.

 Instances of the JdbcTemplate class are thread safe once

configured. So you can configure a single instance of

a JdbcTemplate and then safely inject this shared reference

into multiple DAOs.A common practice when using the

JdbcTemplate class is to configure a DataSource in your

Spring configuration file, and then dependency-inject that

shared DataSource bean into your DAO classes, and the

JdbcTemplate is created in the setter for the DataSource.[2]

A. Data Access Object (DAO)

DAO stands for data access object which is commonly used

for database interaction. DAOs exist to provide a means to

read and write data to the database and they should expose

this functionality through an interface by which the rest of

the application will access them. The Data Access Object

(DAO) support in Spring makes it easy to work with data

access technologies like JDBC, Hibernate, JPA or JDO in a

consistent way.

B. Transaction Management

A database transaction is a sequence of actions that are

treated as a single unit of work. These actions should either

complete entirely or take no effect at all. Transaction

management is an important part of and RDBMS oriented

enterprise applications to ensure data integrity and

consistency.

Spring framework provides an abstract layer on top of

different underlying transaction management APIs. The

Spring's transaction support aims to provide an alternative to

EJB(Enterprise Java Beans) transactions by adding

transaction capabilities to POJOs. Spring supports both

programmatic and declarative transaction management.

EJBs require an application server, but Spring transaction

management can be implemented without a need of

application server.

http://www.ijitee.org/

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075 (Online), Volume-3 Issue-2, July 2013

141

Published By:

Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: B1010073213/13©BEIESP

Journal Website: www.ijitee.org

• Local transactions are specific to a single transactional

resource like a JDBC connection, whereas global

transactions can span multiple transactional resources

like transaction in a distributed system.

Localtransaction management can be useful in a

centralized computing environment where application

components and resources are located at a single site,

and transaction management only involves a local data

manager running on a single machine. Local

transactions are easier to be implemented.

• Global transaction management is required in a

distributed computing environment where all the

resources are distributed across multiple systems. In

such a case transaction management needs to be done

both at local and global levels. A distributed or a global

transaction is executed across multiple systems, and its

execution requires coordination between the global

transaction management system and all the local data

managers of all the involved systems.

Spring supports two types of transaction management:

• Programmatic transaction management: This means that

you have managed the transaction with the help of

programming. That gives you extreme flexibility, but it

is difficult to maintain.

• Declarative transaction management: This means you

separate transaction management from the business

code. You only use annotations or XML based

configuration to manage the transactions.

Declarative transaction management is preferable over

programmatic transaction management though it is less

flexible than programmatic transaction management, which

allows you to control transactions through your code. But as

a kind of crosscutting concern, declarative transaction

management can be modularized with the AOP approach.

Spring supports declarative transaction management through

the Spring AOP framework.

VII. O/R MAPPING INTEGRATION

Of course often you want to use O/R (Object Relational)

mapping, rather than use relational data access. Your overall

application framework must support this also. Thus Spring

integrates out of the box with Hibernate (versions 2 and 3),

JDO (versions 1 and 2), TopLink and other ORM products.

Its data access architecture allows it to integrate with any

underlying data access technology. Spring and Hibernate are

a particularly popular combination.

Why would you use an ORM product plus Spring, instead

of the ORM product directly? Spring adds significant value

in the following areas:

• Session management. Spring offers efficient, easy, and

safe handling of units of work such as Hibernate or

TopLink Sessions. Related code using the ORM tool

alone generally needs to use the same "Session" object

for efficiency and proper transaction handling. Spring

can transparently create and bind a session to the

current thread, using either a declarative, AOP method

interceptor approach, or by using an explicit, "template"

wrapper class at the Java code level. Thus Spring solves

many of the usage issues that affect many users of

ORM technology.

• Resource management. Spring application contexts can

handle the location and configuration of Hibernate

SessionFactories, JDBC datasources, and other related

resources. This makes these values easy to manage and

change.

• Integrated transaction management. Spring allows you

to wrap your ORM code with either a declarative, AOP

method interceptor, or an explicit 'template' wrapper

class at the Java code level. In either case, transaction

semantics are handled for you, and proper transaction

handling (rollback, etc.) in case of exceptions is taken

care of. As we discuss later, you also get the benefit of

being able to use and swap various transaction

managers, without your ORM-related code being

affected. As an added benefit, JDBC-related code can

fully integrate transactionally with ORM code, in the

case of most supported ORM tools. This is useful for

handling functionality not amenable to ORM.

• Exception wrapping. Spring can wrap exceptions from

the ORM layer, converting them from proprietary

(possibly checked) exceptions, to a set of abstracted

runtime exceptions. This allows you to handle most

persistence exceptions, which are non-recoverable, only

in the appropriate layers, without annoying boilerplate

catches/throws, and exception declarations. You can

still trap and handle exceptions anywhere you need to.

Remember that JDBC exceptions (including DB

specific dialects) are also converted to the same

hierarchy, meaning that you can perform some

operations with JDBC within a consistent programming

model.

• To avoid vendor lock-in. ORM solutions have different

performance other characteristics, and there is no

perfect one size fits all solution. Alternatively, you may

find that certain functionality is just not suited to an

implementation using your ORM tool. Thus it makes

sense to decouple your architecture from the tool-

specific implementations of your data access object

interfaces. If you may ever need to switch to another

implementation for reasons of functionality,

performance, or any other concerns, using Spring now

can make the eventual switch much easier. Spring's

abstraction of your ORM tool's Transactions and

Exceptions, along with its IoC approach which allow

you to easily swap in mapper/DAO objects

implementing data-access functionality, make it easy to

isolate all ORM-specific code in one area of your

application, without sacrificing any of the power of

your ORM tool. The PetClinic sample application

shipped with Spring demonstrates the portability

benefits that Spring offers, through providing variants

that use JDBC, Hibernate, TopLink and Apache OJB to

implement the persistence layer.

• Ease of testing. Spring's inversion of control approach

makes it easy to swap the implementations and

locations of resources such as Hibernate session

factories, datasources, transaction managers, and

mapper object implementations (if needed). This makes

it much easier to isolate and test each piece of

persistence-related code in isolation.

Above all, Spring facilitates a mix-and-match approach to

data access. Despite the claims of some ORM vendors,

ORM is not the solution to all problems, although it is a

valuable productivity win in many

cases.

https://www.openaccess.nl/en/open-publications
http://www.ijitee.org/

The Spring Framework: An Open Source Java Platform for Developing Robust Java Applications

142

Published By:

Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: B1010073213/13©BEIESP

Journal Website: www.ijitee.org

 Spring enables a consistent architecture, and transaction

strategy, even if you mix and match persistence approaches,

even without using JTA.

Abstracting a data access API is not enough; we also need

to consider transaction management. JTA is the obvious

solution, but it's a cumbersome API to use directly, and as a

result many J2EE developers used to feel that EJB CMT is

the only rational option for transaction management. Spring

has changed that.

Spring's transaction abstraction is unique in that it's not

tied to JTA or any other transaction management

technology. Spring uses the concept of a transaction

strategy that decouples application code from the underlying

transaction infrastructure (such as JDBC).

Why should you care about this? Isn't JTA the best

answer for all transaction management? If you're writing an

application that uses only a single database, you don't need

the complexity of JTA. You're not interested in XA

transactions or two phase commit. You may not even need a

high-end application server that provides these things. But,

on the other hand, you don't want to have to rewrite your

code should you ever have to work with multiple data

sources.

Imagine you decide to avoid the overhead of JTA by

using JDBC or Hibernate transactions directly. If you ever

need to work with multiple data sources, you'll have to rip

out all that transaction management code and replace it with

JTA transactions. This isn't very attractive and led most

writers on J2EE, to recommend using global JTA

transactions exclusively, effectively ruling out using a

simple web container such as Tomcat for transactional

applications. Using the Spring transaction abstraction,

however, you only have to reconfigure Spring to use a JTA,

rather than JDBC or Hibernate, transaction strategy and

you're done. This is a configuration change, not a code

change. Thus, Spring enables you to write applications that

can scale down as well as up.

VIII. SPRING WEB MVC FRAMEWORK

The Spring web MVC framework provides model-view-

controller architecture and ready components that can be

used to develop flexible and loosely coupled web

applications. The MVC pattern results in separating the

different aspects of the application (input logic, business

logic, and UI logic), while providing a loose coupling

between these elements.

• The Model encapsulates the application data and in

general they will consist of POJO.

• The View is responsible for rendering the model data

and in general it generates HTML output that the

client's browser can interpret.

• The Controller is responsible for processing user

requests and building appropriate model and passes it to

the view for rendering.

A. The Dispatcher Servlet

The Spring Web model-view-controller (MVC) framework

is designed around a DispatcherServlet that handles all the

HTTP requests and responses. The request processing

workflow of the Spring Web MVC DispatcherServlet is

illustrated in the diagram:

Fig. 3.Request processing workflow of the Spring Web

MVC DispatcherServlet

Following is the sequence of events corresponding to an

incoming HTTP request to DispatcherServlet:

• After receiving an HTTP

request, DispatcherServlet consults

the HandlerMapping to call the appropriate Controller.

• The Controller takes the request and calls the

appropriate service methods based on used GET or

POST method. The service method will set model data

based on defined business logic and returns view name

to the DispatcherServlet.

• The DispatcherServlet will take help

from ViewResolver to pickup the defined view for the

request.

• Once view is finalized, The DispatcherServlet passes

the model data to the view which is finally rendered on

the browser.[2]

All the above mentioned components i.e.HandlerMapping,

Controller and ViewResolver are parts of

WebApplicationContext which is an extension of the

plain ApplicationContext with some extra features necessary

for web applications.You need to map requests that you

want the DispatcherServlet to handle, by using a URL

mapping in the web.xml file.

 Defining a Controller - DispatcherServlet delegates the

request to the controllers to execute the functionality

specific to it. The @Controller annotation indicates that a

particular class serves the role of a controller. The

@RequestMapping annotation is used to map a URL to

either an entire class or a particular handler method.

The @Controller annotation defines the class as a Spring

MVC controller.

 Creating JSP Views - Spring MVC supports many types

of views for different presentation technologies. These

include - JSPs, HTML, PDF, Excel worksheets, XML,

Velocity templates, XSLT, JSON, Atom and RSS feeds,

JasperReports etc. But most commonly we use JSP

templates written with JSTL.

http://www.ijitee.org/

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075 (Online), Volume-3 Issue-2, July 2013

143

Published By:

Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: B1010073213/13©BEIESP

Journal Website: www.ijitee.org

IX. CONCLUSION

Spring is a powerful framework that solves many

common problems in J2EE. Many Spring features are also

usable in a wide range of Java environments, beyond classic

J2EE.

Spring provides a consistent way of managing business

objects and encourages good practices such as programming

to interfaces, rather than classes. The architectural basis of

Spring is an Inversion of Control container based around the

use of JavaBean properties. However, this is only part of the

overall picture: Spring is unique in that it uses its IoC

container as the basic building block in a comprehensive

solution that addresses all architectural tiers.

Spring provides a unique data access abstraction,

including a simple and productive JDBC framework that

greatly improves productivity and reduces the likelihood of

errors. Spring's data access architecture also integrates with

TopLink, Hibernate, JDO and other O/R mapping solutions.

Spring also provides a unique transaction management

abstraction, which enables a consistent programming model

over a variety of underlying transaction technologies, such

as JTA or JDBC.

Spring provides an AOP framework written in standard

Java, which provides declarative transaction management

and other enterprise services to be applied to POJOs or - if

you wish - the ability to implement your own custom

aspects. This framework is powerful enough to enable many

applications to dispense with the complexity of EJB, while

enjoying key services traditionally associated with EJB.

REFERENCES

1. http://www.springsource.org/tutorial

2. http://www.tutorialspoint.com/spring/index.htm
3. http://en.wikipedia.org/wiki/Spring_Framework

4. http://www.theserverside.com/news/1364527/Introduction-to-the-

Spring-Framework
5. http://www.theserverside.com/news/1363858/Introduction-to-the-

Spring-Framework

6. http://www.tutorialspoint.com/spring/spring_dependency_injection.ht
m

7. Seth Ladd, Darren Davison, Steven Devijver and Colin Yates,

“Expert Spring MVC and Web Flow”
8. Gary Mak , “Spring Recipes”

https://www.openaccess.nl/en/open-publications
http://www.ijitee.org/

