Cooling Heat Transfer Analysis using Multiple Inline Inclined Air Jet Impingement
Sunil B. Ingole
Sunil B. Ingole, Dr. D. Y. Patil College of Engineering and Innovation, Varale, Pune, India.
Manuscript received on October 14, 2019. | Revised Manuscript received on 22 October, 2019. | Manuscript published on November 10, 2019. | PP: 335-340 | Volume-9 Issue-1, November 2019. | Retrieval Number: L25441081219/2019©BEIESP | DOI: 10.35940/ijitee.L2544.119119
Open Access | Ethics and Policies | Cite | Mendeley | Indexing and Abstracting
© The Authors. Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP). This is an open access article under the CC-BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Abstract: Air cooling has its own advantages in packaging technology and such many applications. The analysis of multi-jet impingement cooling process is performed. Air is used as fluid in present system. A simulated component with heater plate is cooled with four jets. All jets are placed inline or considered in a row. The jets are inclined to base and reference target to be cooled. The inclination of each jet is changed according to various configurations from 60 and 120 Degree to make packaging as compact as possible. Different configurations are examined and best combination is selected for study of variation of target to jet distance. Interface of flow from one jet with other is creating turbulence and effect of this on cooling target plate is studied experimentally. The graphs are plotted giving variations of Nusselt number as per Reynolds number in laminar range up to 2000. Jet inclination combination with first jet -inside, second jet – outside, third jet – outside, and fourth jet – inside is considered as giving best results with inclinations as 60-120-60- 120 degree respectively. The laminar flow, with jet position inline, in which jet fluid flow lines gets mixed and creating turbulence gives higher average Nusselt number indicating better cooling performance. Further experiments using various fluids and various jet combinations / inclinations may be performed. The correlation is presented showing variation between Nusselt number and Reynolds number for typical case.
Keywords: Packaging, Cooling, Jet Impingement, Inclined Jet, Average Nusselt number.
Scope of the Article: Waveform Optimization for Wireless Power Transfer