International Journal of Innovative Technology and Exploring Engineering(TM)
Exploring Innovation| ISSN:2278-3075(Online)| Reg. No.:65021/BPL/CE/12| Published by BEIESP| Impact Factor:4.66
Aims & Scope
Instructions for Authors
Call for Papers
Editorial Board
Ethics & Policies
Volume-7 Issue 1: Published on September 10, 2017
Volume-7 Issue 1: Published on September 10, 2017

 Download Abstract Book (It will be upload on September 10, 2017)

S. No

Volume-7 Issue-1, September 2017, ISSN:  2278-3075 (Online)
Published By: Blue Eyes Intelligence Engineering & Sciences Publication Pvt. Ltd.

Page No.



Asibor, Raphael E., Asibor Victor O.

Paper Title:

Analytical Study of Transient Magneto- Hydrodynamic Electroosomotic Flow and Heat Transfer Analysis in a Horizontal Channel

Abstract: The research work focuses on transient magneto-hydrodynamic electro-osmotic flow and heat transfer analysis in a horizontal microchannel based on the linearized Helmholtz-Smoluchowski approximation and the Navier-Stokes equation. A numerical study of electroosmotic flow through horizontal channels is developed. The governing partial differential equations are transformed into a set of nonlinear coupled ordinary differential equations and solved by perturbation techniques. The effects of various physical parameters on the dimensionless velocity, temperature and concentration profiles are presented graphically, analysed and discussed in detail. The influences of fluid characteristics such as the skin friction coefficient, Nusselt and Sherwood numbers are discussed. Findings indicate that the governing flow parameters have significant influences on flow, heat and mass transfer characteristics.

Analytical study, electro-osmotic flow, Magneto-hydrodynamic, Microfluidics, Transient.


1.       Burgreen, D. and Nakache, F. R. (1964). Electrokinetic flow in ultrafine capillary slits. Journal of Physical Chemistry, 68: 1084-1091.
2.       Chakraborty, S. (2007). Electro-osmotically driven capillary transport of typical non-Newtonian biofluids in rectangular microchannels. Analytica Chimica Acta, 605: 175-184.

3.       Chakraborty, S. (2005). Dynamics of capillary flow of blood into a microfluidic channel. Lab on a Chip - Miniaturisation for Chemistry and Biology, 5: 421-430.Chamkha

4.       Chamkha, A. J. (2004). “UsteadyUnsteady MHD convective heat and mass transfer past a semi infinite vertical permeable moving plate with heat absorption”, Int. J. Engg. Sci., 42:, pp. 217-230. DOI: 10.1016/s0020-7225(03)00285-4.

5.       DDas, S., and Chakraborty, S (2006). Analytical solutions for velocity, temperature and concentration distribution in electro-osmotic microchannel flows of a non-Newtonian bio-fluid. Analytica Chimica Acta, 559: 15-24.

6.       Debye, P. and Hückel, E. (1923). The theory of electrolytes. I. Lowering of freezing point and related phenomena. Physikalische Zeitschrift, 24: 185–206.

7.       Dhinakaran, S.,, Afonso, A. M.  Alves, Alves, M. A. and , Pinho, F. T. (2010). Steady viscoelastic  fluid flow between parallel plates under electro-osmotic forces: Journal of Colloid and Interface Science, 344: 513–520.

8.       Huang, W., Bhullar, R. S. and Yuan-cheng, F. (2001). The surface-tension-driven flow of blood from a droplet into a capillary tube. Journal of Biomechanical Engineering, 123: 446-454.

9.       Ibrahim, S. Y. and Makinde, O. D. (2011). Chemically Reacting Magneto-hydrodynamics (MHD) Boundary Layer Flow of Heat and Mass Transfer past a Low-Heat-Resistant Sheet Moving Vertically Downwards. Scientific Research and Essays, 6(22): 4762-4775.
10.    Ibrahim, S. Y. and Makinde, O. D.  (2010). Chemically Reacting MHD Boundary Layer flow of Heat and Mass Transfer over a Moving Vertical Plate with Suction. Scientific Research and Essays. 5(19): 2875-2882.
11.    Makinde, O. D. and Chinyoka, T.  (2010). MHD transient flows and heat transfer of dusty fluid in a channel with variable physical properties and Navier slip condition, Computers and Mathematics with Applications, 60:  660 – 669.

12.    Okedoye, A. M. and Asibor, R. E. (2014). Effects of Variable Viscosity on magneto-hydrodynamic flow near a stagnation point in the presence of heat generation/absorption. J of NAMP, 27: 171 - 178

13.    Okoro, F. M. and Asibor, R. E. (2016). Unsteady magneto-hydrodynamic electro-osmotic fluid flow and heat transfer analysis in a horizontal channel.  Journal of the Nigerian Association of Mathematical Physics, 38: 99 – 108

14.    PProbstein, R. F. (2003). Physicochemical Hydrodynamics: An Introduction, Second edition, Wiley Interscience, Hoboken, New Jersey, USA.

15.    RReuss, F. F. (1809)., Sur un nouvel effet de l’´electricit´e glavanique M´emoires de la Societ´e Imperiale des Naturalistes de Moscou, 2: pp. 327– 337.

16.    RRice, C. L. and Whitehead, R. (1965)., Electrokinetic flow in a narrow cylindrical capillary. Journal of Physical Chemistry, 69: 4017–402.

17.    Smoluchowski (1903). Contribution a la theorie de l'endosmose electrique et de quelques phenomenes correlatifs. Bulletin International de l'Academie des Sciences de Cracovie, 182-200.

18.    Smoluchowski, V.  M. (1921). Handbuch der Elektrizitat under Magnetismus II, 2: 366-428.

19.    Söderman O, Jönsson B (1996) Electro-osmosis: Velocity profiles in different geometries with Tanner, R.I. (2000). Engineering Rheology. Oxford University Press, New York.

20.    Whitesides, G. M. (2006). The origins and the future of microfluidics. Nature, 442: 368-373.

21.    Zimmerman, W., , Rees, J. and , Craven, T. (2006). Rheometry of non-Newtonian electrokinetic  flow in a microchannel T-junction. Microfluidics and Nanofluidics, 2: 481-492.